

Dual Numbers: Simple Math,
Easy C++ Coding, and Lots
of Tricks

Gino van den Bergen

gino@dtecta.com

Introduction

 Dual numbers extend the real
numbers, similar to complex
numbers.

 Complex numbers adjoin a new
element i, for which i2 = -1.

 Dual numbers adjoin a new
element ε, for which ε2 = 0.

Complex Numbers

 Complex numbers have the form

 z = a + b i

where a and b are real numbers.

 a = real(z) is the real part, and

 b = imag(z) is the imaginary part.

Complex Numbers
(Cont’d)

 Complex operations pretty much
follow rules for real operators:

 Addition:
 (a + b i) + (c + d i) =
 (a + c) + (b + d) i

 Subtraction:
 (a + b i) – (c + d i) =
 (a – c) + (b – d) i

Complex Numbers
(Cont’d)

 Multiplication:

 (a + b i) (c + d i) =
 (ac – bd) + (ad + bc) i

 Products of imaginary parts feed
back into real parts.

Dual Numbers

 Dual numbers have the form

 z = a + b ε

similar to complex numbers.

 a = real(z) is the real part, and

 b = dual(z) is the dual part.

Dual Numbers (Cont’d)

 Operations are similar to complex
numbers, however since ε2 = 0, we
have:
 (a + b ε) (c + d ε) =
 (ac + 0) + (ad + bc) ε

 Dual parts do not feed back into
real parts!

Dual Numbers (Cont’d)

 The real part of a dual calculation
is independent of the dual parts of
the inputs.

 The dual part of a multiplication is
a “cross” product of real and dual
parts.

Taylor Series

 Any value f(a + h) of a smooth function
f can be expressed as an infinite sum:

where f’, f’’, …, f(n) are the first, second,
…, n-th derivative of f.







 2

!2

)(

!1

)(
)()(h

af
h

af
afhaf

Taylor Series Example

Taylor Series Example

Taylor Series Example

Taylor Series Example

Taylor Series Example

Taylor Series and Dual
Numbers

 For f(a + b ε), the Taylor series is:

 All second- and higher-order terms
vanish!

 We have a closed-form expression that
holds the function and its derivative.

0
!1

)(
)()(


  b

af
afbaf

Real Functions on Dual
Numbers

 Any differentiable real function can be
extended to dual numbers:

 f(a + b ε) = f(a) + b f’(a) ε

 For example,

 sin(a + b ε) = sin(a) + b cos(a) ε

Compute Derivatives

 Add a unit dual part to the input value
of a real function.

 Evaluate function using dual arithmetic.

 The output has the function value as
real part and the derivate’s value as
dual part:

 f(a + ε) = f(a) + f’(a) ε

How does it work?

 Check out the product rule of
differentiation:

Notice the “cross” product of functions
and derivatives. Recall that

(a + a’ε)(b + b’ε) = ab + (ab’+ a’b)ε

)()()()())()((xgxfxgxfxgxf
dx

d


Automatic Differentiation
in C++

 We need some easy way of
extending functions on floating-
point types to dual numbers…

 …and we need a type that holds
dual numbers and offers operators
for performing dual arithmetic.

Extension by Abstraction

 C++ allows you to abstract from
the numerical type through:

 Typedefs

 Function templates

 Constructors (conversion)

 Overloading

 Traits class templates

Abstract Scalar Type

 Never use explicit floating-point
types, such as float or double.

 Instead use a type name, e.g.
Scalar, either as template

parameter or as typedef:

typedef float Scalar;

Constructors

 Primitive types have constructors
as well:
 Default: float() == 0.0f

 Conversion: float(2) == 2.0f

 Use constructors for defining
constants, e.g. use Scalar(2),
rather than 2.0f or (Scalar)2 .

Overloading

 Operators and functions on primitive
types can be overloaded in hand-baked
classes, e.g. std::complex.

 Primitive types use operators: +,-,*,/

 …and functions: sqrt, pow, sin, …

 NB: Use <cmath> rather than <math.h>.
That is, use sqrt NOT sqrtf on floats.

Traits Class Templates

 Type-dependent constants, e.g. machine
epsilon, are obtained through a traits
class defined in <limits>.

 Use
std::numeric_limits<T>::epsilon()
rather than FLT_EPSILON.

 Either specialize this traits template for
hand-baked classes or create your own
traits class template.

Example Code (before)

 float smoothstep(float x)

{

 if (x < 0.0f)

 x = 0.0f;

 else if (x > 1.0f)

 x = 1.0f;

 return (3.0f – 2.0f * x) * x * x;

}

Example Code (after)

 template <typename T>

T smoothstep(T x)

{

 if (x < T())

 x = T();

 else if (x > T(1))

 x = T(1);

 return (T(3) – T(2) * x) * x * x;

}

Dual Numbers in C++

 C++ stdlib has a class template
std::complex<T> for complex
numbers.

 We create a similar class template
Dual<T> for dual numbers.

 Dual<T> defines constructors,
accessors, operators, and standard
math functions.

Dual<T>

 template <typename T>
class Dual
{
public:
…
T real() const { return m_re; }
T dual() const { return m_du; }
…
private:
 T m_re;
 T m_du;
};

Dual<T>: Constructor

 template <typename T>
Dual<T>::Dual(T re = T(), T du = T())
 : m_re(re)
 , m_du(du)
{}

…

Dual<float> z1; // zero initialized

Dual<float> z2(2); // zero dual part

Dual<float> z3(2, 1);

Dual<T>: operators

 template <typename T>

Dual<T> operator*(Dual<T> a,

 Dual<T> b)

{

 return Dual<T>(

 a.real() * b.real(),

 a.real() * b.dual() +

 a.dual() * b.real()

);

 }

Dual<T>: operators
(Cont’d)

 We also need these

template <typename T>
Dual<T> operator*(Dual<T> a, T b);

template <typename T>
Dual<T> operator*(T a, Dual<T> b);

since template argument deduction does
not perform implicit type conversions.

Dual<T>: Standard Math

 template <typename T>

Dual<T> sqrt(Dual<T> z)

{

 T x = sqrt(z.real());

 return Dual<T>(

 x,

 z.dual() * T(0.5) / x

);

 }

Curve Tangent Example

 Curve tangents are often computed by
approximation:

for tiny values of h.

httwhere
tt

tt





01

01

01 ,
)()(

)()(

pp

pp

Curve Tangent Example:
Approximation (Bad #1)

Actual
tangent P(t0)

P(t1)

Curve Tangent Example:
Approximation (Bad #2)

t1 drops outside
parameter domain

(t1 > b)

P(t0)

P(t1)

Curve Tangent Example:
Analytic Approach

 For a 3D curve

the tangent is

],[)),(),(),(()(batwheretztytxt p

))(),(),(()(,
)(

)(
tztytxtwhere

t

t





p

p

p

Curve Tangent Example:
Dual Numbers

 Make a curve function template using a class
template for 3D vectors:

 template <typename T>

 Vector3<T> curveFunc(T t);

 Call the curve function on Dual<Scalar>(t, 1)
rather than t:

 Vector3<Dual<Scalar> > r =

 curveFunc(Dual<Scalar>(t, 1));

Curve Tangent Example:
Dual Numbers (Cont’d)

 The evaluated point is the real part of the result:

Vector3<Scalar> position = real(r);

 The tangent at this point is the dual part of the
result after normalization:

Vector3<Scalar> tangent =

 normalize(dual(r));

Line Geometry

 The line through points p and q can be
expressed:

 Explicitly,

 x(t) = p t + q(1 – t)

 Implicitly, as a set of points x for which:

 (p – q) × x = p × q

Line Geometry

p

q
0

p×q

 p × q is orthogonal to the plane opq, and its
length is equal to the area of the parallellogram
spanned by p and q.

Line Geometry

p

q
0

p×q
x

 All points x on the line pq span with p – q a
parallellogram that has equal area and
orientation as the one spanned by p and q.

Plücker Coordinates

 Plücker coordinates are 6-tuples of
the form (ux, uy, uz, vx, vy, vz),
where

 u = (ux, uy, uz) = p – q, and

 v = (vx, vy, vz) = p × q

Plücker Coordinates
(Cont’d)

 Main use in graphics is for determining
line-line orientations.

 For (u1:v1) and (u2:v2) directed lines, if

 u1 • v2 + v1 • u2 is

zero: the lines intersect
positive: the lines cross right-handed
negative: the lines cross left-handed

Triangle vs. Ray

 If the signs of permuted dot products of
the ray and the edges are all equal, then
the ray intersects the triangle.

Plücker Coordinates and
Dual Numbers

 Dual 3D vectors conveniently
represent Plücker coordinates:

 Vector3<Dual<Scalar> >


For a line (u:v), u is the real part
and v is the dual part.

Plücker Coordinates and
Dual Numbers (Cont’d)

 The dot product of dual vectors u1 + v1ε
and u2 + v2ε is dual number z, for which

 real(z) = u1 • u2, and

 dual(z) = u1 • v2 + v1 • u2

 The dual part is the permuted dot
product.

Translation

 Translation of lines only affects the
dual part. Translation over c gives:

 Real: (p + c) – (q + c) = p - q

 Dual: (p + c) × (q + c)
 = p × q - c × (p – q)

 p – q pops up in the dual part!

Translation (Cont’d)

 Create a dual 3×3 matrix T, for which

 real(T) = I, the identity matrix, and

 dual(T) =

 Translation is performed by multiplying this dual
matrix with the dual vector.























 

0

0

0

][

xy

xz

yz

cc

cc

cc

c

Rotation

 Real and dual parts are rotated in
the same way. For a matrix R:

 Real: Rp – Rq = R(p – q)

 Dual: Rp × Rq = R(p × q)

 The latter is only true for rotation
matrices!

Rigid-Body Motion

 For rotation matrix R and translation vector c,
the dual 3×3 matrix M = [I:-[c]×]R, i.e.,

 real(M) = R, and

 dual(M) =

maps Plücker coordinates to the new reference
frame.

RRc























 

0

0

0

][

xy

xz

yz

cc

cc

cc

Further Reading

 Motor Algebra: Linear and angular
velocity of a rigid body combined in a
dual 3D vector.

 Screw Theory: Any rigid motion can be
expressed as a screw motion, which is
represented by a dual quaternion.

 Spatial Vector Algebra: Featherstone
uses 6D vectors for representing
velocities and forces in robot dynamics.

References

 D. Vandevoorde and N. M. Josuttis. C++
Templates: The Complete Guide. Addison-
Wesley, 2003.

 K. Shoemake. Plücker Coordinate Tutorial. Ray
Tracing News, Vol. 11, No. 1

 R. Featherstone. Robot Dynamics Algorithms.
Kluwer Academic Publishers, 1987.

 L. Kavan et al. Skinning with dual quaternions.
Proc. ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, 2007

http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html

Conclusions

 Abstract from numerical types in
your C++ code.

 Differentiation is easy, fast, and
accurate with dual numbers.

 Dual numbers have other uses as
well. Explore yourself!

Thank You!

 Check out sample code soon to be
released on:

 http://www.dtecta.com

