GDC Europe
www.GDCEurope.com
August 17–19, 2009
Game Developers Conference® Europe
Cologne Congress Center East
Cologne, Germany

Supported by
European Games Developer Federation
gamescom
BIU
Dual Numbers: Simple Math, Easy C++ Coding, and Lots of Tricks

Gino van den Bergen
gino@dtecta.com
Introduction

- Dual numbers extend the real numbers, similar to complex numbers.
- Complex numbers adjoin a new element i, for which $i^2 = -1$.
- Dual numbers adjoin a new element ε, for which $\varepsilon^2 = 0$.
Complex Numbers

- Complex numbers have the form
 \[z = a + b \, i \]

 where \(a \) and \(b \) are real numbers.
 - \(a = \text{real}(z) \) is the real part, and
 - \(b = \text{imag}(z) \) is the imaginary part.
Complex Numbers (Cont’d)

- Complex operations pretty much follow rules for real operators:

 Addition:
 \[(a + b \ i) + (c + d \ i) = (a + c) + (b + d) \ i\]

 Subtraction:
 \[(a + b \ i) - (c + d \ i) = (a - c) + (b - d) \ i\]
Complex Numbers (Cont’d)

Multiplication:

\[(a + b\, i) \left(c + d\, i \right) = (ac - bd) + (ad + bc)\, i\]

Products of imaginary parts feed back into real parts.
Dual Numbers

- Dual numbers have the form
 \[z = a + b \varepsilon \]
 similar to complex numbers.
- \(a = \text{real}(z) \) is the real part, and
- \(b = \text{dual}(z) \) is the dual part.
Operations are similar to complex numbers, however since $\varepsilon^2 = 0$, we have:

$$(a + b \varepsilon)(c + d \varepsilon) = (ac + 0) + (ad + bc) \varepsilon$$

Dual parts do not feed back into real parts!
Dual Numbers (Cont’d)

- The real part of a dual calculation is independent of the dual parts of the inputs.
- The dual part of a multiplication is a “cross” product of real and dual parts.
Taylor Series

Any value $f(a + h)$ of a smooth function f can be expressed as an infinite sum:

$$f(a + h) = f(a) + \frac{f'(a)}{1!} h + \frac{f''(a)}{2!} h^2 + \cdots$$

where f', f'', \ldots, $f^{(n)}$ are the first, second, \ldots, n-th derivative of f.
Taylor Series Example
Taylor Series and Dual Numbers

- For $f(a + b \epsilon)$, the Taylor series is:
 \[
 f(a + b \epsilon) = f(a) + \frac{f'(a)}{1!} b \epsilon + \ldots 0
 \]

- All second- and higher-order terms vanish!

- We have a closed-form expression that holds the function and its derivative.
Real Functions on Dual Numbers

- Any differentiable real function can be extended to dual numbers:

\[f(a + b \varepsilon) = f(a) + b f'(a) \varepsilon \]

- For example,

\[\sin(a + b \varepsilon) = \sin(a) + b \cos(a) \varepsilon \]
Compute Derivatives

- Add a unit dual part to the input value of a real function.
- Evaluate function using dual arithmetic.
- The output has the function value as real part and the derivate’s value as dual part:

\[f(a + \varepsilon) = f(a) + f'(a) \varepsilon \]
How does it work?

* Check out the product rule of differentiation:

$$\frac{d}{dx}(f(x) \cdot g(x)) = f(x) \cdot g'(x) + f'(x) \cdot g(x)$$

Notice the “cross” product of functions and derivatives. Recall that

$$(a + a'\varepsilon)(b + b'\varepsilon) = ab + (ab' + a'b)\varepsilon$$
Automatic Differentiation in C++

- We need some easy way of extending functions on floating-point types to dual numbers...
- ...and we need a type that holds dual numbers and offers operators for performing dual arithmetic.
C++ allows you to abstract from the numerical type through:

- Typedefs
- Function templates
- Constructors (conversion)
- Overloading
- Traits class templates
Abstract Scalar Type

Never use explicit floating-point types, such as `float` or `double`.
Instead use a type name, e.g. `Scalar`, either as template parameter or as typedef:

```cpp
typedef float Scalar;
```
Constructors

- Primitive types have constructors as well:
 - Default: `float() == 0.0f`
 - Conversion: `float(2) == 2.0f`

- Use constructors for defining constants, e.g. use `Scalar(2)`, rather than `2.0f` or `(Scalar)2`.
Overloading

- Operators and functions on primitive types can be overloaded in hand-baked classes, e.g. `std::complex`.
- Primitive types use operators: `+,-,*,/`
- ...and functions: `sqrt, pow, sin, ...
- NB: Use `<cmath>` rather than `<math.h>`. That is, use `sqrt` NOT `sqrtf` on floats.
Traits Class Templates

- Type-dependent constants, e.g. machine epsilon, are obtained through a traits class defined in `<limits>`.
- Use `std::numeric_limits<T>::epsilon()` rather than `FLT_EPSILON`.
- Either specialize this traits template for hand-baked classes or create your own traits class template.
Example Code (before)

```c
float smoothstep(float x)
{
    if (x < 0.0f)
        x = 0.0f;
    else if (x > 1.0f)
        x = 1.0f;
    return (3.0f - 2.0f * x) * x * x;
}
```
template <typename T>
T smoothstep(T x)
{
 if (x < T())
 x = T();
 else if (x > T(1))
 x = T(1);
 return (T(3) - T(2) * x) * x * x;
}
Dual Numbers in C++

- C++ stdlib has a class template `std::complex<T>` for complex numbers.
- We create a similar class template `Dual<T>` for dual numbers.
- `Dual<T>` defines constructors, accessors, operators, and standard math functions.
template <typename T>
class Dual
{
public:
...
T real() const { return m_re; }
T dual() const { return m_du; }
...
private:
 T m_re;
 T m_du;
};
Dual<T>:: Constructor

```cpp
template <typename T>
Dual<T>::Dual(T re = T(), T du = T())
    : m_re(re), m_du(du) {}

...

Dual<float> z1; // zero initialized
Dual<float> z2(2); // zero dual part
Dual<float> z3(2, 1);
```
Dual<T>:: operators

template <typename T>
Dual<T> operator*(Dual<T> a, Dual<T> b)
{
 return Dual<T>(
 a.real() * b.real(),
 a.real() * b.dual() +
 a.dual() * b.real());
}
Dual<T>: operators (Cont’d)

We also need these

```cpp
template <typename T>
Dual<T> operator*(Dual<T> a, T b);

template <typename T>
Dual<T> operator*(T a, Dual<T> b);
```

since template argument deduction does not perform implicit type conversions.
Dual<T>:: Standard Math

```cpp
template <typename T>
Dual<T> sqrt(Dual<T> z) {
    T x = sqrt(z.real());
    return Dual<T>(
        x,
        z.dual() * T(0.5) / x);
}
```
Curve Tangent Example

Curve tangents are often computed by approximation:

\[
\frac{p(t_1) - p(t_0)}{\|p(t_1) - p(t_0)\|}, \quad \text{where} \quad t_1 = t_0 + h
\]

for tiny values of \(h \).
Curve Tangent Example: Approximation (Bad #1)
Curve Tangent Example: Approximation (Bad #2)

\[t_1 \] drops outside parameter domain \((t_1 > b)\)
Curve Tangent Example: Analytic Approach

For a 3D curve

\[p(t) = (x(t), y(t), z(t)), \quad \text{where} \quad t \in [a, b] \]

the tangent is

\[\frac{p'(t)}{\|p'(t)\|}, \quad \text{where} \quad p'(t) = (x'(t), y'(t), z'(t)) \]
Curve Tangent Example: Dual Numbers

- Make a curve function template using a class template for 3D vectors:

  ```
  template <typename T>
  Vector3<T> curveFunc(T t);
  ```

- Call the curve function on `Dual<Scalar>(t, 1)` rather than `t`:

  ```
  Vector3<Dual<Scalar>> r = curveFunc(Dual<Scalar>(t, 1));
  ```
Curve Tangent Example: Dual Numbers (Cont’d)

- The evaluated point is the real part of the result:

\[
\text{Vector3<Scalar> } \text{position} = \text{real}(r);\]

- The tangent at this point is the dual part of the result after normalization:

\[
\text{Vector3<Scalar> } \text{tangent} = \text{normalize}(\text{dual}(r));\]
Line Geometry

- The line through points \(p \) and \(q \) can be expressed:
 - Explicitly,
 \[
 x(t) = p \, t + q(1 - t)
 \]
 - Implicitly, as a set of points \(x \) for which:
 \[
 (p - q) \times x = p \times q
 \]
Line Geometry

\[p \times q \text{ is orthogonal to the plane } opq, \text{ and its length is equal to the area of the parallelogram spanned by } p \text{ and } q. \]
All points x on the line pq span with $p - q$ a parallelogram that has equal area and orientation as the one spanned by p and q.
Plücker Coordinates

Plücker coordinates are 6-tuples of the form \((u_x, u_y, u_z, v_x, v_y, v_z)\), where

\[
\mathbf{u} = (u_x, u_y, u_z) = \mathbf{p} - \mathbf{q}, \quad \text{and}
\]

\[
\mathbf{v} = (v_x, v_y, v_z) = \mathbf{p} \times \mathbf{q}
\]
Plücker Coordinates (Cont’d)

- Main use in graphics is for determining line-line-line orientations.
- For \((u_1:v_1)\) and \((u_2:v_2)\) directed lines, if

\[
 u_1 \cdot v_2 + v_1 \cdot u_2 \text{ is zero: the lines intersect}
\]

positive: the lines cross right-handed

negative: the lines cross left-handed
If the signs of permuted dot products of the ray and the edges are all equal, then the ray intersects the triangle.
Plücker Coordinates and Dual Numbers

- Dual 3D vectors conveniently represent Plücker coordinates:

 \[\text{Vector3\{Dual\{Scalar\}\}} \]

- For a line \((u:v)\), \(u\) is the real part and \(v\) is the dual part.
Plücker Coordinates and Dual Numbers (Cont’d)

- The dot product of dual vectors $u_1 + v_1\varepsilon$ and $u_2 + v_2\varepsilon$ is dual number z, for which

 $\text{real}(z) = u_1 \cdot u_2$, and

 $\text{dual}(z) = u_1 \cdot v_2 + v_1 \cdot u_2$

- The dual part is the permuted dot product.
Translation

Translation of lines only affects the dual part. Translation over \(c \) gives:

- **Real:** \((p + c) - (q + c) = p - q\)
- **Dual:** \((p + c) \times (q + c) = p \times q - c \times (p - q)\)

\(p - q \) pops up in the dual part!
Translation (Cont’d)

Create a dual 3×3 matrix \(T\), for which

\[
\text{real}(T) = I, \text{ the identity matrix, and}
\]

\[
dual(T) = -[c]_x = -\begin{bmatrix}
0 & -c_z & c_y \\
c_z & 0 & -c_x \\
-c_y & c_x & 0
\end{bmatrix}
\]

Translation is performed by multiplying this dual matrix with the dual vector.
Rotation

- Real and dual parts are rotated in the same way. For a matrix R:
 - **Real:** $R_p - R_q = R(p - q)$
 - **Dual:** $R_p \times R_q = R(p \times q)$
- The latter is only true for rotation matrices!
Rigid-Body Motion

For rotation matrix \mathbf{R} and translation vector \mathbf{c}, the dual 3×3 matrix $\mathbf{M} = [\mathbf{I}:-[\mathbf{c}]_x]\mathbf{R}$, i.e.,

$$\text{real}(\mathbf{M}) = \mathbf{R}, \text{ and}$$

$$\text{dual}(\mathbf{M}) = -[\mathbf{c}]_x \mathbf{R} = -\begin{bmatrix} 0 & -c_z & c_y \\ c_z & 0 & -c_x \\ -c_y & c_x & 0 \end{bmatrix} \mathbf{R}$$

maps Plücker coordinates to the new reference frame.
Further Reading

- **Motor Algebra**: Linear and angular velocity of a rigid body combined in a dual 3D vector.
- **Screw Theory**: Any rigid motion can be expressed as a screw motion, which is represented by a dual quaternion.
- **Spatial Vector Algebra**: Featherstone uses 6D vectors for representing velocities and forces in robot dynamics.
References

Conclusions

- Abstract from numerical types in your C++ code.
- Differentiation is easy, fast, and accurate with dual numbers.
- Dual numbers have other uses as well. Explore yourself!
Thank You!

Check out sample code soon to be released on:

http://www.dtecta.com