" -) ; Supported by
Q@ G Deveicpe
B ®

— gamescom
www.GDCEurope.com

o

August 17-19, 2009

Game Developers Conference® Europe
Cologne Congress Center East
Cologne, Germany

|

Dual Numbers: Simple Math,
Easy C++ Coding, and Lots
- of Tricks

Gino van den Bergen
gino@dtecta.com

THINK:

Introduction

= Dual numbers extend the real
numbers, similar to complex
numbers.

www.GDCEurope.com @ Com :)IeX numbers adJOIn a neW
element /i, for which i? = -1.

= Dual numbers adjoin a new
element ¢, for which ¢ = 0.

THINK:

Complex Numbers

= Complex numbers have the form
Z=a+bi

where a and b are real numbers.
= a@ = real(z) is the real part, and
= b = imag(z) is the imaginary part.

THINK:

Complex Numbers
(Cont'd)

= Complex operations pretty much
follow rules for real operators:

= Addition:
(@a+bi)+(c+di) =
(a+c)+(b+d)i
= Subtraction:
(@+bi)-(c+di) =
(@a-c)+((b-d)i

THINK:

Complex Numbers
(Cont'd)

= Multiplication:

(@a+bi)(c+di) =
(ac — bd) + (ad + bc) i

= Products of imaginary parts feed
back into real parts.

THINK:

Dual Numbers

= Dual numbers have the form
Z=a+ bc¢

similar to complex numbers.
= a@ = real(z) is the real part, and
= b = dual(z) is the dual part.

THINK:

Dual Numbers (Cont’'d)

= Operations are similar to complex
numbers, however since €2 = 0, we
have:
(@a+beg)(c+de) =
(ac + 0) + (ad + bc) €

= Dual parts do not feed back into
real parts!

THINK:

Dual Numbers (Cont’'d)

= The real part of a dual calculation
is independent of the dual parts of
the inputs.

= The dual part of a multiplication is
a "cross” product of real and dual
parts.

THINK:

Taylor Series

= Any value f(a + h) of a smooth function
f can be expressed as an infinite sum:

f(a+h)=f(a)+ ff") h+ f"z(!a) N2 ...

where f/, f”, ..., 1) are the first, second,
..., h-th derivative of f.

www.GDCEurope.com

THINK

THINK:

THINK:

THINK:

THINK:

THINK:

www.GDCEurope.com

THINK:

‘ Taylor Series and Dual
Numbers

= For f(a + b €), the Taylor series is:

f(a+bs)=f(a)+ ff") be+...0

= All second- and higher-order terms
vanish!

= We have a closed-form expression that
holds the function and its derivative.

Real Functions on Dual
Numbers

= Any differentiable real function can be
extended to dual numbers:

fla+be)=Ffa)+bFfa)e

= For example,

sin(a + b €) = sin(a) + b cos(a) €

THINK:

www.GDCEurope.com

THINK

Compute Derivatives

= Add a unit dual part to the input value
of a real function.

= Evaluate function using dual arithmetic.

= The output has the function value as
real part and the derivate’s value as
dual part:

fla+¢€) =f(a) +f(a)e

How does it work?

= Check out the product rule of
differentiation:

(109 900)=F00- 900+ /(990

Notice the “cross” product of functions
and derivatives. Recall that

www.GDCEurope.com

(a +ae)(b+ be) =ab + (ab’'+ ab)e

THINK

Automatic Differentiation
in C++

= We need some easy way of
extending functions on floating-
point types to dual numbers...

e o»s o .and we need a type that holds
dual numbers and offers operators
for performing dual arithmetic.

THINK

A DVEHON O GRTED S WEDMA L

Extension by Abstraction

= C++ allows you to abstract from
the numerical type through:
Typedefs
Function templates
Constructors (conversion)
Overloading
Traits class templates

www.GDCEurope.com

THINK:

Abstract Scalar Type

. 19 o Never use explicit floating-point
B ©l®[® types, such as float or double.

EUI’OPE = Instead use a type name, e.q.
- . . Scalar, either as template

parameter or as typedef:

typedef float Scalar;

THINK:
ssssssss

Constructors

= Primitive types have constructors
as well:
Default: float () == 0.0f
Conversion: float (2) == 2.0f

www.GDCEurope.com

= Use constructors for defining
constants, e.g. use Scalar (2),
rather than 2.0f or (Scalar)?2.

THINK

www.GDCEurope.com

THINK

Overloading

= Operators and functions on primitive

types can be overloaded in hand-baked
classes, e.g. std: :complex.

« Primitive types use operators: +, -, *, /
= ...and functions: sgrt, pow, sin, ...

= NB: Use <cmath> rather than <math.h>.
That is, use sgrt NOT sgrtf on floats.

www.GDCEurope.com

THINK

A DVEHON O GRTED S WEDMA L

Traits Class Templates

= Type-dependent constants, e.g. machine

epsilon, are obtained through a traits
class defined in <1imits>.

« Use
std::numeric limits<T>::epsilon ()
rather than FLT EPSILON,

= Either specialize this traits template for
hand-baked classes or create your own
traits class template.

Example Code (before)

@ float smoothstep(float x)

{
1if (x < 0.0f)

x = 0.0f;
else 1f (x > 1.0%)
www.GDCEurope.com x = 1.0 f,’
return (3.0f - 2.0f * x) * x * x;

THINK:

www.GDCEurope.com

THINK

Example Code (after)

¢ template <typename T>
T smoothstep (T x)

if (x < T())
x = T();
else 1f (x > T (1))
x = T(1);
return (T(3) — T(2) * x) * x * X;

Dual Numbers in C++

= C++ stdlib has a class template
std: :complex<T> for complex

numbers.

= We create a similar class template

" e Dual<T> for dual numbers.

= Dual<T> defines constructors,
accessors, operators, and standard
math functions.

THINK

A DVEHON O GRTED S WEDMA L

Dual<T>

@ template <typename T>
class Dual

{
public:

T real() const { return m re; }
T dual() const { return m du; }

www.GDCEurope.com

private:
T m rej;
T m du;

}

THINK

Dual<T>: Constructor

¢ template <typename T>
Dual<T>::Dual (T re = T(), T du = T())
:m re(re)
, m du (du)
{}

www.GDCEurope.com

Dual<float> z1l; // zero initialized
Dual<float> z2(2); // zero dual part
Dual<float> z3(2, 1);

THINK

Dual<T>: operators

@ template <typename T>
Dual<T> operator* (Dual<T> a,

Dual<T> Db)
{
return Dual<T> (
www.GDCEurope.com a. real () * b . real () ,
a.real() * b.dual() +

a.dual () * b.real/()
) ;

THINK:

Dual<T>: operators
(Cont'd)

= We also need these

template <typename T>
Dual<T> operator* (Dual<T> a, T Db);

www.GDCEurope.com t emp late <t ypename T>
Dual<T> operator* (T a, Dual<T> Db);

since template argument deduction does
not perform implicit type conversions.

THINK:

Dual<T>: Standard Math

@ template <typename T>
Dual<T> sqgrt (Dual<T> 2z)

T x = sgrt(z.real()):;
www.GDCEurope.com return Dual<T> (

XI
z.dual () * T(0.5) / x
) ;

THINK:

| Curve Tangent Example

= Curve tangents are often computed by
approximation:

p(t,) —p(t;)
[p(t) —p(ty)|

for tiny values of h.

where t =t,+h

THINK:
ssssssss

— Curve Tangent Example:
g Approximation (Bad #1)

g Approximation (Bad #2)

\ , P(t)

/\ CoP(t)

" Curve Tangent Example:
a Analytic Approach

< For a 3D curve

p(t) = (x(t), y(t), z(t)), where te[a,b]

the tangent is

PO here p'(t) = (x'(t), y'(t), Z'(t))

@)

Curve Tangent Example:
Dual Numbers

= Make a curve function template using a class
template for 3D vectors:

template <typename T>
Vector3<T> curvebunc (T t);

www.GDCEurope.com

= Call the curve function on Dual<Scalar>(t, 1)
rather than t:

Vector3<Dual<Scalar> > r =
curvelunc (Dual<Scalar>(t, 1)),

THINK:

 Curve Tangent Example:
Dual Numbers (Cont’'d)

=« The evaluated point is the real part of the result:

Vector3<Scalar> position = real(r);

= The tangent at this point is the dual part of the
W S . result after normalization:

Vector3<Scalar> tangent =
normalize (dual (r)) ;

THINK:

Line Geometry

= The line through points p and q can be
expressed:

= Explicitly,
x(t) =pt+q(l-t)

www.GDCEurope.com

= Implicitly, as a set of points x for which:

(P-q)xx=pxq

THINK:

Line Geometry

www.GDCEurope.com

pxq

\ g
° \
= p % q is orthogonal to the plane opq, and its
length is equal to the area of the parallellogram
spanned by p and q.

THINK:

Line Geometry

www.GDCEurope.com x
pxq
\ G
° \
= All points x on the line pq span with p — q a

parallellogram that has equal area and
orientation as the one spanned by p and q.

THINK

A DVEHON O GRTED S WEDMA L

Pllcker Coordinates

= Placker coordinates are 6-tuples of
the form (u,, u,, u, v,, v,, v,),
where
u=(u,u,u)=p-q, and

V=(VX,Vy,VZ)=qu

THINK:

Pllcker Coordinates
(Cont’'d)

= Main use in graphics is for determining
line-line orientations.

= For (u;:vy) and (u,:v,) directed lines, if

U,ev,+v,eu, is

www.GDCEurope.com

Zero: the lines intersect
positive: the lines cross right-handed
negative: the lines cross left-handed

THINK

A DVEHON O GRTED S WEDMA L

www.GDCEurope.com

= If the signs of permuted dot products of
the ray and the edges are all equal, then
the ray intersects the triangle.

THINK:

Plucker Coordinates and
Dual Numbers

= Dual 3D vectors conveniently
represent PlUcker coordinates:

Vector3<Dual<Scalar> >

For a line (u:v), u is the real part
and v is the dual part.

THINK

A DVEHON O GRTED S WEDMA L

Pllcker Coordinates and
Dual Numbers (Cont’'d)

=~ The dot product of dual vectors u; + v;€
and u, + v,g is dual number z, for which

real(z) = u; e u,, and
dual(z) = u;e v, + v;eu,

= The dual part is the permuted dot
product.

THINK

A DVEHON O GRTED S WEDMA L

Translation

= Translation of lines only affects the
dual part. Translation over ¢ gives:
“»Real: (p+c)-(q+¢c)=p-q
= Dual: (p + ¢) x (q + ¢€)
=pxq-cx(p-4q)
= Pp — q pops up in the dual part!

THINK:

= Create a dual 3x3 matrix T, for which

real(T) = I, the identity matrix, and

0 -c, ¢c,
www.GDCEurope.com duaI(T) = _[C]X - CZ O _CX
—-C, C, 0

= Translation is performed by multiplying this dual
matrix with the dual vector.

THINK:

Rotation

= Real and dual parts are rotated in
the same way. For a matrix R:

= Real: Rp - Rq =R(p -q)

= Dual: Rp x Rq = R(p x q)

= The latter is only true for rotation
matrices!

THINK:

Rigid-Body Motion

= For rotation matrix R and translation vector c,
the dual 3x3 matrix M = [I:-[c].]R, i.e.,

real(M) = R, and

0 -c, ¢
www.GDCEurope.com duaI(M) __ [C]>< R — CZ O — CX R
-c, ¢ 0|

maps Pllicker coordinates to the new reference
frame.

THINK:

www.GDCEurope.com

Further Reading

= Motor Algebra: Linear and angular
velocity of a rigid body combined in a
dual 3D vector.

= Screw Theory: Any rigid motion can be
expressed as a screw motion, which is
represented by a dual quaternion.

« Spatial Vector Algebra: Featherstone
uses 6D vectors for representing
velocities and forces in robot dynamics.

www.GDCEurope.com

THINK:

References

=« D. Vandevoorde and N. M. Josuttis. C++
Templates: The Complete Guide. Addison-
Wesley, 2003.

= K. Shoemake. Pliicker Coordinate Tutorial. Ray
Tracing News, VVol. 11, No. 1

= R. Featherstone. Robot Dynamics Algorithms.
Kluwer Academic Publishers, 1987.

= L. Kavan et al. Skinning with dual quaternions.
Proc. ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, 2007

http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html

Conclusions

= Abstract from numerical types in
your C++ code.

= Differentiation is easy, fast, and
accurate with dual numbers.

= Dual numbers have other uses as
well. Explore yourself!

THINK:

= Check out sample code soon to be
released on:

http://www.dtecta.com

THINK:

