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Introduction 

 Dual numbers extend the real 
numbers, similar to complex 
numbers.  

 Complex numbers adjoin a new 
element i, for which i2 = -1. 

 Dual numbers adjoin a new 
element ε, for which ε2 = 0. 



Complex Numbers  

 Complex numbers have the form 
 
  z = a + b i 
 
where a and b are real numbers. 

 a = real(z) is the real part, and 

 b = imag(z) is the imaginary part. 



Complex Numbers 
(Cont’d) 

 Complex operations pretty much 
follow rules for real operators: 

 Addition:  
 (a + b i) + (c + d i) =  
  (a + c) + (b + d) i 

 Subtraction:  
 (a + b i) – (c + d i) =  
  (a – c) + (b – d) i 



Complex Numbers 
(Cont’d) 

 Multiplication:  
 
 (a + b i) (c + d i) = 
      (ac – bd) + (ad + bc) i 
  

 Products of imaginary parts feed 
back into real parts. 



Dual Numbers  

 Dual numbers have the form 
 
  z = a + b ε  

 
similar to complex numbers. 

 a = real(z) is the real part, and 

 b = dual(z) is the dual part. 



Dual Numbers (Cont’d) 

 Operations are similar to complex 
numbers, however since ε2 = 0, we 
have: 
 (a + b ε) (c + d ε) =  
  (ac + 0) + (ad + bc) ε 

 Dual parts do not feed back into 
real parts! 



Dual Numbers (Cont’d) 

 The real part of a dual calculation 
is independent of the dual parts of 
the inputs. 

 The dual part of a multiplication is 
a “cross” product of real and dual 
parts.      



Taylor Series 

 Any value f(a + h) of a smooth function 
f can be expressed as an infinite sum: 
 
 
 
 
where f’, f’’, …, f(n) are the first, second, 
…, n-th derivative of f. 
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Taylor Series Example 
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Taylor Series and Dual 
Numbers 

 For f(a + b ε), the Taylor series is: 

 

 

 

 All second- and higher-order terms 
vanish! 

 We have a closed-form expression that 
holds the function and its derivative. 
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Real Functions on Dual 
Numbers 

 Any differentiable real function can be 
extended to dual numbers: 
 
 f(a + b ε) = f(a) + b f’(a) ε 
 

 For example,  
 
 sin(a + b ε) = sin(a) + b cos(a) ε 



Compute Derivatives 

 Add a unit dual part to the input value 
of a real function. 

 Evaluate function using dual arithmetic. 

 The output has the function value as 
real part and the derivate’s value as 
dual part: 
 
 f(a + ε) = f(a) + f’(a) ε 



How does it work? 

 Check out the product rule of 
differentiation: 
 
 
 
Notice the “cross” product of functions 
and derivatives. Recall that 
 
(a + a’ε)(b + b’ε) = ab + (ab’+ a’b)ε 
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Automatic Differentiation 
in C++ 

 We need some easy way of 
extending functions on floating-
point types to dual numbers… 

 …and we need a type that holds 
dual numbers and offers operators 
for performing dual arithmetic. 



Extension by Abstraction 

 C++ allows you to abstract from 
the numerical type through: 

 Typedefs  

 Function templates 

 Constructors (conversion) 

 Overloading 

 Traits class templates  



Abstract Scalar Type 

 Never use explicit floating-point 
types, such as float or double. 

 Instead use a type name, e.g. 
Scalar, either as template 

parameter or as typedef: 
 
typedef float Scalar; 



Constructors 

 Primitive types have constructors 
as well: 
 Default: float() == 0.0f 

 Conversion: float(2) == 2.0f 
  

 Use constructors for defining 
constants, e.g. use Scalar(2), 
rather than 2.0f or (Scalar)2 . 



Overloading 

 Operators and functions on primitive 
types can be overloaded in hand-baked 
classes, e.g. std::complex. 

 Primitive types use operators: +,-,*,/ 

 …and functions: sqrt, pow, sin, … 

 NB: Use <cmath> rather than <math.h>. 
That is, use sqrt NOT sqrtf on floats. 

 



Traits Class Templates 

 Type-dependent constants, e.g. machine 
epsilon, are obtained through a traits 
class defined in <limits>. 

 Use 
std::numeric_limits<T>::epsilon() 
rather than FLT_EPSILON. 

 Either specialize this traits template for 
hand-baked classes or create your own 
traits class template. 



Example Code (before) 

 float smoothstep(float x) 

{ 

    if (x < 0.0f) 

        x = 0.0f; 

    else if (x > 1.0f) 

        x = 1.0f; 

    return (3.0f – 2.0f * x) * x * x; 

}  



Example Code (after) 

 template <typename T> 

T smoothstep(T x) 

{ 

    if (x < T()) 

        x = T(); 

    else if (x > T(1)) 

        x = T(1); 

    return (T(3) – T(2) * x) * x * x; 

} 



Dual Numbers in C++ 

 C++ stdlib has a class template 
std::complex<T> for complex 
numbers. 

 We create a similar class template 
Dual<T> for dual numbers.  

 Dual<T> defines constructors, 
accessors, operators, and standard 
math functions. 



Dual<T> 

 template <typename T> 
class Dual 
{  
public: 
… 
T real() const { return m_re; } 
T dual() const { return m_du; } 
… 
private: 
  T m_re; 
   T m_du;  
}; 

 



Dual<T>: Constructor 

 template <typename T> 
Dual<T>::Dual(T re = T(), T du = T()) 
    : m_re(re) 
    , m_du(du) 
{} 
 

… 
 

Dual<float> z1; // zero initialized 

Dual<float> z2(2); // zero dual part  

Dual<float> z3(2, 1);  
  



Dual<T>: operators 

 template <typename T> 

Dual<T> operator*(Dual<T> a,  

                  Dual<T> b) 

{ 

  return Dual<T>( 

         a.real() * b.real(), 

         a.real() * b.dual() + 

             a.dual() * b.real() 

         ); 

  } 



Dual<T>: operators 
(Cont’d) 

 We also need these 
 
template <typename T> 
Dual<T> operator*(Dual<T> a, T b); 
 
template <typename T> 
Dual<T> operator*(T a, Dual<T> b); 
 

since template argument deduction does 
not perform implicit type conversions. 
 



Dual<T>: Standard Math 

 template <typename T> 

Dual<T> sqrt(Dual<T> z) 

{ 

    T x = sqrt(z.real()); 

    return Dual<T>( 

           x,  

           z.dual() * T(0.5) / x 

           ); 

 } 



Curve Tangent Example 

 Curve tangents are often computed by 
approximation:  
 
 
 
 
 
for tiny values of h. 
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Curve Tangent Example: 
Approximation (Bad #1) 

Actual 
tangent P(t0) 

P(t1) 



Curve Tangent Example: 
Approximation (Bad #2) 

t1 drops outside 
parameter domain 

(t1 > b) 

P(t0) 

P(t1) 



Curve Tangent Example: 
Analytic Approach 

 For a 3D curve  
 
 
 
 
the tangent is  
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Curve Tangent Example: 
Dual Numbers 

 Make a curve function template using a class 
template for 3D vectors: 
 
 template <typename T> 

 Vector3<T> curveFunc(T t); 

 

 Call the curve function on Dual<Scalar>(t, 1) 
rather than t: 
 
 Vector3<Dual<Scalar> > r =   

     curveFunc(Dual<Scalar>(t, 1)); 



Curve Tangent Example: 
Dual Numbers (Cont’d) 

 The evaluated point is the real part of the result: 
 
Vector3<Scalar> position = real(r); 

 

 The tangent at this point is the dual part of the 
result after normalization: 
 
Vector3<Scalar> tangent =  

    normalize(dual(r)); 



Line Geometry 

 The line through points p and q can be 
expressed: 

 Explicitly,  
  
 x(t) = p t + q(1 – t) 
 

 Implicitly, as a set of points x for which: 
 
 (p – q) × x = p × q 



Line Geometry 

p 

q 
0 

p×q 

 p × q is orthogonal to the plane opq, and its 
length is equal to the area of the parallellogram 
spanned by p and q. 



Line Geometry 

p 

q 
0 

p×q 
x 

 All points x on the line pq span with p – q a 
parallellogram that has equal area and 
orientation as the one spanned by p and q. 



Plücker Coordinates 

 Plücker coordinates are 6-tuples of 
the form (ux, uy, uz, vx, vy, vz), 
where 
    
 u = (ux, uy, uz) = p – q,   and 
 
 v = (vx, vy, vz) = p × q  



Plücker Coordinates 
(Cont’d) 

 Main use in graphics is for determining 
line-line orientations. 

 For (u1:v1) and (u2:v2) directed lines, if 
  
  u1 • v2 + v1 • u2     is 

    
zero:  the lines intersect 
positive: the lines cross right-handed 
negative: the lines cross left-handed 



Triangle vs. Ray 

 If the signs of permuted dot products of 
the ray and the edges are all equal, then 
the ray intersects the triangle. 



Plücker Coordinates and  
Dual Numbers 

 Dual 3D vectors conveniently 
represent Plücker coordinates: 
 
 Vector3<Dual<Scalar> > 

  
For a line (u:v), u is the real part 
and v is the dual part.  



Plücker Coordinates and  
Dual Numbers (Cont’d) 

 The dot product of dual vectors u1 + v1ε 
and u2 + v2ε is dual number z, for which 
 
 real(z) = u1 • u2, and 
  
 dual(z) = u1 • v2 + v1 • u2  

 

 The dual part is the permuted dot 
product.   



Translation 

 Translation of lines only affects the 
dual part. Translation over c gives: 

 Real: (p + c) – (q + c) = p - q 

 Dual: (p + c) × (q + c)   
      = p × q - c × (p – q) 

 p – q pops up in the dual part! 



Translation (Cont’d) 

 Create a dual 3×3 matrix T, for which 
 
 real(T) = I, the identity matrix, and  
 
 
 
 dual(T) = 
 
 
 

 Translation is performed by multiplying this dual 
matrix with the dual vector. 
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Rotation 

 Real and dual parts are rotated in 
the same way. For a matrix R: 

 Real: Rp – Rq = R(p – q) 

 Dual: Rp × Rq = R(p × q)  

 The latter is only true for rotation 
matrices! 



Rigid-Body Motion 

 For rotation matrix R and translation vector c, 
the dual 3×3 matrix M = [I:-[c]×]R, i.e., 
 
 real(M) = R, and  
 
 
 
 dual(M) = 
 
 
 
maps Plücker coordinates to the new reference 
frame. 
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Further Reading 

 Motor Algebra: Linear and angular 
velocity of a rigid body combined in a 
dual 3D vector. 

 Screw Theory: Any rigid motion can be 
expressed as a screw motion, which is 
represented by a dual quaternion. 

 Spatial Vector Algebra: Featherstone 
uses 6D vectors for representing 
velocities and forces in robot dynamics. 
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Conclusions 

 Abstract from numerical types in 
your C++ code.  

 Differentiation is easy, fast, and 
accurate with dual numbers. 

 Dual numbers have other uses as 
well. Explore yourself!  



Thank You! 

 Check out sample code soon to be 
released on: 
 
        http://www.dtecta.com  

 


