Physics for Game Programmers: Collision Detection

Gino van den Bergen gino@dtecta.com

Collision Detection

- Find all pairs of objects that are colliding now, or will collide over the next frame.
- Compute data for response:
- Contact normal
- Contact point
- Penetration depth

The Problem

The Problem

The Solution

Construct Plausible Trajectories

- Limited to trajectories involving piecewise constant linear velocities.
- Angular velocities are ignored. Rotations are considered instantaneous.

No Continuous Rotations?

- Solving continuous rotations is a lot trickier, so we dodge the issue.
- Tunneling may occur for rotating objects, but is less visible and often acceptable.
- Only doing continuous translations fixes our problems and is doable in real time.

Collision Objects

- Static environment (buildings, terrain) is typically modeled using polygon meshes.
- Moving objects (player, NPCs, vehicles, projectiles) are typically convex shapes.
- We need to detect convex-convex and convex-mesh collisions.

Convex Shapes

Convex

Concave

Polytopes

Quadric Shapes

Configuration Space

- The configuration space obstacle (CSO) of objects A and B is the set of all vectors from a point of B to a point of A.

$$
A-B=\{\mathbf{a}-\mathbf{b}: \mathbf{a} \in A, \mathbf{b} \in B\}
$$

Configuration Space (cont'd)

- CSO is basically one object dilated by the other:

Translation

- Translation of A and/or B results in a translation of $A-B$.

Rotation

- Rotation of A and/or B changes the shape of $A-B$.

Configuration Space?

- Collision queries on a pair of convexes are reduced to queries on the position of the origin with respect to the CSO.
- Point queries are easier than queries on pairs of shapes.

Queries: Distance

- The distance between two objects is the distance from the origin to the CSO.

$$
d(A, B)=\min \{\|\mathbf{x}\|: \mathbf{x} \in A-B\}
$$

Queries: Intersection Testing

- The objects intersect (have a common point) if the origin is contained by the CSO.

$$
A \cap B \neq \varnothing \Leftrightarrow \mathbf{0} \in A-B
$$

Queries: Penetration Depth

- The penetration-depth vector is the shortest translation that resolves a penetration, i.e., the point on the CSO's boundary closest to the origin.

$$
p(A, B)=\inf \{\|\mathbf{x}\|: \mathbf{x} \notin A-B\}
$$

Queries: Shape Casting

- Finding collisions that occur over a frame for A translated over sand B over \mathbf{t} boils down to a ray cast from the origin onto the CSO along the vector $\mathbf{r}=\mathbf{t}-\mathbf{s}$.

$$
\min \{\lambda: \lambda \mathbf{r} \in A-B, 0 \leq \lambda \leq 1\}
$$

Ray Query on the CSO

Separating Axis

Separating Axis Theorem (SAT)

- For each pair of disjoint polytopes, of which at least one has a volume, there exists a separating axis that is orthogonal to:
- a face of either polytope, or
- an edge from each polytope

SAT Sketchy Proof

- The CSO of polytopes is a polytope and has a volume.
- For disjoint polytopes, the origin lies on the outside of at least one face of the CSO.
- A face of the CSO is either the CSO of a face and a vertex or of two edges.

Separating Axis Method

- Test all face normals and all cross products of edge directions.
- If none of these vectors yield a separating axis then the polytopes must intersect.
- Given polytopes with resp. f_{1} and f_{2} faces and e_{1} and e_{2} edge directions, we need to test at most $f_{1}+f_{2}+e_{1} * e_{2}$ axes.

Separating Axis Method

Polytope 1 Polytope 2 \#Axes

Line segment Box
Triangle Box
Box
Box

Tetrahedron Tetrahedron

Separating Axis Method

Polytope 1 Polytope 2 \#Axes

Line segment Box
Triangle Box
Box
Tetrahedron

Box

Tetrahedron

Separating Axis Method

Polytope 1 Polytope 2 \#Axes

Line segment Box
Triangle Box
Box Box

Tetrahedron Tetrahedron

$$
\begin{aligned}
& 0+3+1 * 3=6 \\
& 1+3+3 * 3=13
\end{aligned}
$$

Separating Axis Method

Polytope 1 Polytope 2 \#Axes

Line segment Box
Triangle Box
Box
Tetrahedron
Box

$$
\begin{aligned}
& 0+3+1 * 3=6 \\
& 1+3+3 * 3=13 \\
& 3+3+3 * 3=15
\end{aligned}
$$

Separating Axis Method

Polytope 1 Polytope 2 \#Axes

Line segment Box
Triangle
Box
Tetrahedron

Box
Box
Tetrahedron
$0+3+1 * 3=6$
$1+3+3 * 3=13$
$3+3+3 * 3=15$
$4+4+6 * 6=44$

Separating Axis Queries

- Suitable for intersection testing, most notably in bounding box hierarchies.
- Too expensive for general polytopes due to $\mathrm{O}\left(n^{3}\right)$ complexity.
- In case of intersection, the axis for which overlap is shallowest is a proper direction for the penetration depth vector.

GJK Does It All

- GJK is an iterative method that computes closest points.
- The GJK ray cast can perform continuous collision detection.
- The expanding polytope algorithm (EPA) returns the penetration-depth vector.

GJK Algorithm

- Approximate the point of the CSO closest to the origin by generating a sequence of simplices inside the CSO.
- A simplex is a point, a line segment, a triangle, or a tetrahedron.
- Each new simplex lies closer to the origin than its predecessor.

GJK Algorithm (cont'd)

- Simplex vertices are computed using support mappings. (Definition follows.)
- Terminate as soon as the current simplex is close enough.
- In case of an intersection, the simplex contains the origin.

Support Mappings

- A support mapping s_{A} of an object A maps a vector \mathbf{v} to a point of A that lies furthest in the direction of \mathbf{v}.

$$
\mathbf{v} \cdot s_{A}(\mathbf{v})=\max \{\mathbf{v} \cdot \mathbf{x}: \mathbf{x} \in A\}
$$

Support Mappings

Any point on this face may be returned as support point

$$
s_{A}(\mathbf{v})
$$

Affine Transformation

- Shapes can be translated, rotated, and scaled. For $\mathbf{T}(\mathbf{x})=\mathbf{B x}+\mathbf{c}$, we have

$$
S_{\mathbf{T}(A)}(\mathbf{v})=\mathbf{T}\left(s_{A}\left(\mathbf{B}^{\mathrm{T}} \mathbf{v}\right)\right)
$$

Convex Hull

- Convex hulls of arbitrary convex shapes are readily available.

$$
S_{\operatorname{conv}\left\{X_{0}, \ldots, X_{n-1}\right\}}(\mathbf{v})=S_{\left\{s_{X_{0}}(\mathbf{v}), \ldots, s_{X_{n-1}}(\mathbf{v})\right\}}(\mathbf{v})
$$

Minkowski Sum

- Shapes can be fattened by Minkowski addition.

$$
\begin{aligned}
& s_{A+B}(\mathbf{v})=s_{A}(\mathbf{v})+s_{B}(\mathbf{v}) \\
& s_{A-B}(\mathbf{v})=s_{A}(\mathbf{v})-s_{B}(-\mathbf{v})
\end{aligned}
$$

GJK Steps (1/6)

Suppose we have a simplex inside the

 CSO...

GJK Steps (2/6)

- ...and the point \mathbf{v} of the simplex closest to the origin.

GJK Steps (3/6)

- Compute support point $\mathbf{w}=s_{A-B}(-\mathbf{v})$.

GJK Steps (4/6)

- Add support point w to the current simplex.

GJK Steps (5/6)

- Compute the closest point \mathbf{v}^{\prime} of the new simplex.

GJK Steps (6/6)

- Discard all vertices that do not contribute to \mathbf{v}^{\prime}.

Separating Axis

- If only an intersection test is needed then let GJK terminate as soon as the lower bound $\mathbf{v} \cdot \mathbf{w}$ becomes positive.
- For a positive lower bound $\mathbf{v} \cdot \mathbf{w}$, the vector \mathbf{v} is a separating axis.

Separating Axis (cont'd)

- The supporting plane through w separates the origin from the CSO.

Separating Axes and Coherence

- Separating axes can be cached and reused as initial \mathbf{v} in future tests on the same object pair.
- When the degree of frame coherence is high, the cached \mathbf{v} is likely to be a separating axis in the new frame as well.
- An incremental version of GJK takes roughly one iteration per frame for smoothly moving objects.

GJK Ray Cast

GJK Ray Cast

- Do a standard GJK iteration, and use the support planes as clipping planes.
- Each time the ray is clipped, the clip point λ becomes the new origin.
- ...and the new simplex is the last-found support point w wrt the new origin.
- The normal -v of the last clipping plane is the normal at the hit point.

GJK Ray Cast

Accuracy vs. Performance

- Accuracy can be traded for performance by tweaking the error tolerance $\varepsilon_{\text {tol }}$.
- A greater tolerance results in fewer iterations but less accurate hit points and normals.

Accuracy vs. Performance

$$
\varepsilon_{\text {tol }}=10^{-7} \text {, avg. time: } 3.65 \mu \mathrm{~s} @ 2.6 \mathrm{GHz}
$$

Accuracy vs. Performance

$$
\varepsilon_{\text {tol }}=10^{-6} \text {, avg. time: } 2.80 \mu \mathrm{~s} @ 2.6 \mathrm{GHz}
$$

Accuracy vs. Performance

$$
\varepsilon_{\text {tol }}=10^{-5} \text {, avg. time: } 2.03 \mu \mathrm{~s} @ 2.6 \mathrm{GHz}
$$

Accuracy vs. Performance

$$
\varepsilon_{\text {tol }}=10^{-4} \text {, avg. time: } 1.43 \mu \mathrm{~s} @ 2.6 \mathrm{GHz}
$$

Accuracy vs. Performance

$$
\varepsilon_{\text {tol }}=10^{-3} \text {, avg. time: } 1.02 \mu \mathrm{~s} @ 2.6 \mathrm{GHz}
$$

Accuracy vs. Performance

$$
\varepsilon_{\text {tol }}=10^{-2} \text {, avg. time: } 0.77 \mu \mathrm{~s} @ 2.6 \mathrm{GHz}
$$

Accuracy vs. Performance

$$
\varepsilon_{\text {tol }}=10^{-1} \text {, avg. time: } 0.62 \mu \mathrm{~s} @ 2.6 \mathrm{GHz}
$$

GJK Algorithm: Pros

- Extremely versatile:
- Applicable to any combination of convex shape types.
- Computes distances, common points, and separating axes.
- Can be tailored for finding space-time collisions.
- Allows a smooth trade-off between accuracy and speed.

GJK Algorithm: Pros (cont'd)

- Performs well:
- Exploits frame coherence.
- Competitive with dedicated solutions for polytopes (Lin-Canny, V-Clip, SWIFT) .
- Despite its conceptual complexity, implementing GJK is not too difficult.
- Small code size.

GJK Algorithm: Cons

- Difficult to grasp:
- Concepts from linear algebra and convex analysis (determinants, Minkowski addition), take some time to get comfortable with.
- Maintaining a "geometric" mental image of the workings of the algorithm is challenging and not very helpful.

GJK Algorithm: Cons (cont'd)

- Suffers from numerical issues:
- Termination is governed by predicates that rely on tolerances.
- Despite the use of tolerances, certain "hacks" are needed in order to guarantee termination in all cases.
- Using 32-bit floating-point numbers is doable but tricky.

Resting Contacts

- Contact data for resting contacts are obtained through a hybrid approach.
- Objects are dilated slightly to add a skin.
- For interpenetrations that are only skindeep the closest points of the "bones" give us the contact data.

Shallow Interpenetrations

Resting Contacts

- For deeper interpenetrations contact data are obtained from the penetrationdepth vector.
- This should only be necessary in emergencies.

Deep Interpenetrations

Meshes Have Bumpy Edges

Solving Bumpy Edges

- Obtain barycentric coordinates of the closest point returned by GJK.
- Use these coordinates to interpolate the vertex normals.
- Similar to Phong shading: Use a normalized lerp.

Smooth Interpolated Normals

References

- Gilbert, Johnson, and Keerthi. A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Journal of Robotics and Automation, 4(2):192-203, 1988.
- Gottschalk, Lin, and Manocha. OBBTree: a hierarchical structure for rapid interference detection. Proc. SIGGRAPH '96.

References (cont'd)

- Gino van den Bergen. Collision Detection in Interactive 3D Environments. Morgan Kaufmann Publishers, 2004.
- Gino van den Bergen. Smooth Mesh Contacts with GJK. In Game Physics Pearls, A K Peters, 2010.

Thank You!

» For papers and other information, check:
www.dtecta.com

