
Physics for Game Programmers:
Collision Detection

Gino van den Bergen
gino@dtecta.com

Collision Detection

● Find all pairs of objects that are colliding
now, or will collide over the next frame.

● Compute data for response:

● Contact normal

● Contact point

● Penetration depth

The Problem

The Problem

The Solution

Construct Plausible Trajectories

● Limited to trajectories involving
piecewise constant linear velocities.

● Angular velocities are ignored. Rotations
are considered instantaneous.

No Continuous Rotations?

● Solving continuous rotations is a lot
trickier, so we dodge the issue.

● Tunneling may occur for rotating objects,
but is less visible and often acceptable.

● Only doing continuous translations fixes
our problems and is doable in real time.

Collision Objects

● Static environment (buildings, terrain) is
typically modeled using polygon meshes.

● Moving objects (player, NPCs, vehicles,
projectiles) are typically convex shapes.

● We need to detect convex-convex and
convex-mesh collisions.

Convex Shapes

Polytopes

Quadric Shapes

Configuration Space

● The configuration space obstacle (CSO)
of objects A and B is the set of all vectors
from a point of B to a point of A.

},:{ BABA baba

Configuration Space (cont’d)

● CSO is basically one object dilated by the
other:

Translation

● Translation of A and/or B results in a
translation of A – B.

Rotation

● Rotation of A and/or B changes the
shape of A – B.

Configuration Space?

● Collision queries on a pair of convexes
are reduced to queries on the position of
the origin with respect to the CSO.

● Point queries are easier than queries on
pairs of shapes.

Queries: Distance

● The distance between two objects is the
distance from the origin to the CSO.

 BABAd xx :min),(

Queries: Intersection Testing

● The objects intersect (have a common
point) if the origin is contained by the
CSO.

BABA 0

Queries: Penetration Depth

● The penetration-depth vector is the
shortest translation that resolves a
penetration, i.e., the point on the CSO’s
boundary closest to the origin.

 BABAp xx :inf),(

Queries: Shape Casting

● Finding collisions that occur over a frame
for A translated over s and B over t boils

down to a ray cast from the origin onto
the CSO along the vector r = t – s.

}10,:min{ BAr

Ray Query on the CSO

Separating Axis

0

wv

wv

pv

qv

p

qpw

q

v

v

Separating Axis Theorem (SAT)

● For each pair of disjoint polytopes, of
which at least one has a volume, there
exists a separating axis that is
orthogonal to:

● a face of either polytope, or

● an edge from each polytope

SAT Sketchy Proof

● The CSO of polytopes is a polytope and
has a volume.

● For disjoint polytopes, the origin lies on
the outside of at least one face of the
CSO.

● A face of the CSO is either the CSO of a
face and a vertex or of two edges.

Separating Axis Method

● Test all face normals and all cross products of
edge directions.

● If none of these vectors yield a separating axis
then the polytopes must intersect.

● Given polytopes with resp. f1 and f2 faces and e1
and e2 edge directions, we need to test at most
 f1 + f2 + e1 *e2 axes.

Polytope 1 Polytope 2 #Axes

Line segment Box

Triangle Box

Box Box

Tetrahedron Tetrahedron

Separating Axis Method

Polytope 1 Polytope 2 #Axes

Line segment Box 0 + 3 + 1*3 = 6

Triangle Box

Box Box

Tetrahedron Tetrahedron

Separating Axis Method

Polytope 1 Polytope 2 #Axes

Line segment Box 0 + 3 + 1*3 = 6

Triangle Box 1 + 3 + 3*3 = 13

Box Box

Tetrahedron Tetrahedron

Separating Axis Method

Polytope 1 Polytope 2 #Axes

Line segment Box 0 + 3 + 1*3 = 6

Triangle Box 1 + 3 + 3*3 = 13

Box Box 3 + 3 + 3*3 = 15

Tetrahedron Tetrahedron

Separating Axis Method

Polytope 1 Polytope 2 #Axes

Line segment Box 0 + 3 + 1*3 = 6

Triangle Box 1 + 3 + 3*3 = 13

Box Box 3 + 3 + 3*3 = 15

Tetrahedron Tetrahedron 4 + 4 + 6*6 = 44

Separating Axis Method

Separating Axis Queries

● Suitable for intersection testing, most notably
in bounding box hierarchies.

● Too expensive for general polytopes due to
O(n3) complexity.

● In case of intersection, the axis for which
overlap is shallowest is a proper direction for
the penetration depth vector.

GJK Does It All

● GJK is an iterative method that
computes closest points.

● The GJK ray cast can perform continuous
collision detection.

● The expanding polytope algorithm (EPA)
returns the penetration-depth vector.

GJK Algorithm

● Approximate the point of the CSO closest
to the origin by generating a sequence of
simplices inside the CSO.

● A simplex is a point, a line segment, a
triangle, or a tetrahedron.

● Each new simplex lies closer to the origin
than its predecessor.

GJK Algorithm (cont’d)

● Simplex vertices are computed using
support mappings. (Definition follows.)

● Terminate as soon as the current simplex
is close enough.

● In case of an intersection, the simplex
contains the origin.

Support Mappings

● A support mapping sA of an object A maps
a vector v to a point of A that lies furthest
in the direction of v.

 AsA xxvvv :max)(

Support Mappings

Any point on

this face may be

returned as

support point

)(vAs

)(vAs

)(vAs

v v

A

● Shapes can be translated, rotated, and scaled. For
T(x) = Bx + c, we have

))(()(T

)(vBTvT AA ss

Affine Transformation

● Convex hulls of arbitrary convex shapes are readily
available.

)()()}(),...,({},...,conv{
1010

vv vv

nXXn ssXX ss

Convex Hull

● Shapes can be fattened by Minkowski addition.

)()()(

)()()(

vvv

vvv

BABA

BABA

sss

sss

Minkowski Sum

GJK Steps (1/6)

● Suppose we have a simplex inside the
CSO…

● …and the point v of the simplex closest to

the origin.

0

v

GJK Steps (2/6)

● Compute support point w = sA-B(-v).

w
v

GJK Steps (3/6)

● Add support point w to the current

simplex.

w

GJK Steps (4/6)

● Compute the closest point v’ of the new

simplex.

0
w

'v

GJK Steps (5/6)

● Discard all vertices that do not contribute
to v’.

0
w

'v

GJK Steps (6/6)

Separating Axis

● If only an intersection test is needed then
let GJK terminate as soon as the lower
bound v∙w becomes positive.

● For a positive lower bound v∙w, the vector
v is a separating axis.

w
v

● The supporting
plane through w

separates the
origin from the
CSO.

wv

0

Separating Axis (cont’d)

Separating Axes and Coherence

● Separating axes can be cached and reused as
initial v in future tests on the same object pair.

● When the degree of frame coherence is high, the
cached v is likely to be a separating axis in the
new frame as well.

● An incremental version of GJK takes roughly one
iteration per frame for smoothly moving objects.

0

rv

wv

v

r

w

GJK Ray Cast

GJK Ray Cast

● Do a standard GJK iteration, and use the
support planes as clipping planes.

● Each time the ray is clipped, the clip point
λr becomes the new origin.

● …and the new simplex is the last-found
support point w wrt the new origin.

● The normal -v of the last clipping plane is
the normal at the hit point.

The vector -v is the

latest normal.

0
v

r

w

r

The origin

advances to the

new lower bound.

GJK Ray Cast

● Accuracy can be traded for performance
by tweaking the error tolerance εtol.

● A greater tolerance results in fewer
iterations but less accurate hit points and
normals.

Accuracy vs. Performance

Accuracy vs. Performance

εtol = 10-7, avg. time: 3.65 μs @ 2.6 GHz

Accuracy vs. Performance

εtol = 10-6, avg. time: 2.80 μs @ 2.6 GHz

Accuracy vs. Performance

εtol = 10-5, avg. time: 2.03 μs @ 2.6 GHz

Accuracy vs. Performance

εtol = 10-4, avg. time: 1.43 μs @ 2.6 GHz

Accuracy vs. Performance

εtol = 10-3, avg. time: 1.02 μs @ 2.6 GHz

Accuracy vs. Performance

εtol = 10-2, avg. time: 0.77 μs @ 2.6 GHz

Accuracy vs. Performance

εtol = 10-1, avg. time: 0.62 μs @ 2.6 GHz

GJK Algorithm: Pros

● Extremely versatile:

● Applicable to any combination of convex shape
types.

● Computes distances, common points, and
separating axes.

● Can be tailored for finding space-time collisions.

● Allows a smooth trade-off between accuracy
and speed.

GJK Algorithm: Pros (cont'd)

● Performs well:

● Exploits frame coherence.

● Competitive with dedicated solutions for
polytopes (Lin-Canny, V-Clip, SWIFT) .

● Despite its conceptual complexity,
implementing GJK is not too difficult.

● Small code size.

GJK Algorithm: Cons

● Difficult to grasp:

● Concepts from linear algebra and convex
analysis (determinants, Minkowski addition),
take some time to get comfortable with.

● Maintaining a “geometric” mental image of the
workings of the algorithm is challenging and not
very helpful.

GJK Algorithm: Cons (cont'd)

● Suffers from numerical issues:

● Termination is governed by predicates that rely
on tolerances.

● Despite the use of tolerances, certain “hacks”
are needed in order to guarantee termination in
all cases.

● Using 32-bit floating-point numbers is doable
but tricky.

Resting Contacts

● Contact data for resting contacts are
obtained through a hybrid approach.

● Objects are dilated slightly to add a skin.

● For interpenetrations that are only skin-
deep the closest points of the “bones”
give us the contact data.

Shallow Interpenetrations

Resting Contacts

● For deeper interpenetrations contact
data are obtained from the penetration-
depth vector.

● This should only be necessary in
emergencies.

Deep Interpenetrations

Meshes Have Bumpy Edges

Solving Bumpy Edges

● Obtain barycentric coordinates of the
closest point returned by GJK.

● Use these coordinates to interpolate the
vertex normals.

● Similar to Phong shading: Use a
normalized lerp.

Smooth Interpolated Normals

References

● Gilbert, Johnson, and Keerthi. A fast procedure
for computing the distance between complex
objects in three-dimensional space. IEEE Journal
of Robotics and Automation, 4(2):192-203,
1988.

● Gottschalk, Lin, and Manocha. OBBTree: a
hierarchical structure for rapid interference
detection. Proc. SIGGRAPH ’96.

References (cont’d)

● Gino van den Bergen. Collision Detection in
Interactive 3D Environments. Morgan Kaufmann
Publishers, 2004.

● Gino van den Bergen. Smooth Mesh Contacts
with GJK. In Game Physics Pearls, A K Peters,
2010.

Thank You!

» For papers and other information, check:

 www.dtecta.com

