Math for Game Programmers: Dual Numbers

Gino van den Bergen
egino@dtecta.com
Introduction

- Dual numbers extend real numbers, similar to complex numbers.
- Complex numbers adjoin an element i, for which $i^2 = -1$.
- Dual numbers adjoin an element ϵ, for which $\epsilon^2 = 0$.
Complex Numbers

- Complex numbers have the form

\[z = a + b \, i \]

where \(a \) and \(b \) are real numbers.

- \(a = \text{real}(z) \) is the real part, and
- \(b = \text{imag}(z) \) is the imaginary part.
Complex Numbers (cont’d)

- Complex operations pretty much follow rules for real operators:
 - Addition:
 \[(a + b \ i) + (c + d \ i) = (a + c) + (b + d) \ i\]
 - Subtraction:
 \[(a + b \ i) - (c + d \ i) = (a - c) + (b - d) \ i\]
Complex Numbers (cont’d)

- Multiplication:

\[(a + b \, i) (c + d \, i) = (ac - bd) + (ad + bc) \, i\]

- Products of imaginary parts feed back into real parts.
Dual Numbers

- Dual numbers have the form

\[z = a + b \varepsilon \]

similar to complex numbers.

- \(a = \text{real}(z) \) is the real part, and
- \(b = \text{dual}(z) \) is the dual part.
Dual Numbers (cont’d)

- Operations are similar to complex numbers, however since $\varepsilon^2 = 0$, we have:

$$(a + b \varepsilon) (c + d \varepsilon) = (ac + 0) + (ad + bc)\varepsilon$$

- Dual parts do not feed back into real parts!
Dual Numbers (cont’d)

● The real part of a dual calculation is independent of the dual parts of the inputs.

● The dual part of a multiplication is a “cross” product of real and dual parts.
Taylor Series

• Any value $f(a + h)$ of a smooth function f can be expressed as an infinite sum:

$$f(a + h) = f(a) + \frac{f'(a)}{1!} h + \frac{f''(a)}{2!} h^2 + \cdots$$

where f', f'', ..., $f^{(n)}$ are the first, second, ..., n-th derivative of f.
Taylor Series Example
Taylor Series Example
Taylor Series Example
Taylor Series Example

\[n=3 \]
Taylor Series Example
Taylor Series and Dual Numbers

- For $f(a + b \varepsilon)$, the Taylor series is:

$$f(a + b\varepsilon) = f(a) + \frac{f'(a)}{1!} b \varepsilon + \ldots 0$$

- All second- and higher-order terms vanish!

- We have a closed-form expression that holds the function and its derivative.
Real Functions on Dual Numbers

- Any differentiable real function f can be extended to dual numbers, as:

$$f(a + b \varepsilon) = f(a) + b f'(a) \varepsilon$$

- For example,

$$\sin(a + b \varepsilon) = \sin(a) + b \cos(a) \varepsilon$$
Automatic Differentiation

- Add a unit dual part to the input value of a real function.
- Evaluate function using dual arithmetic.
- The output has the function value as real part and the derivate’s value as dual part:

\[f(a + \varepsilon) = f(a) + f'(a) \varepsilon \]
How does it work?

- Check out the product rule of differentiation:
 \[(f \cdot g)' = f \cdot g' + f' \cdot g\]
- Notice the “cross” product of functions and their derivatives.
- Recall that
 \[(a + a'\varepsilon)(b + b'\varepsilon) = ab + (ab' + a'b)\varepsilon\]
Automatic Differentiation in C++

- We need some easy way of extending functions on floating-point types to dual numbers...
- ...and we need a type that holds dual numbers and offers operators for performing dual arithmetic.
Extension by Abstraction

- C++ allows you to abstract from the numerical type through:
 - Typedefs
 - Function templates
 - Constructors and conversion operators
 - Overloading
 - Traits class templates
Abstract Scalar Type

- Never use built-in floating-point types, such as `float` or `double`, explicitly.
- Instead use a type name, e.g. `Scalar`, either as template parameter or as typedef,

```cpp
typedef float float Scalar;
```
Constructors

- Built-in types have constructors as well:
 - Default: `float() == 0.0f`
 - Conversion: `float(2) == 2.0f`
- Use constructors for defining constants, e.g. use `Scalar(2)`, rather than `2.0f` or `(Scalar)2`.
Overloading

- Operators and functions on built-in types can be overloaded in numerical classes, such as `std::complex`.
- Built-in types support operators: `+,-,*,/`
- ...and functions: `sqrt`, `pow`, `sin`, ...
- NB: Use `<cmath>` rather than `<math.h>`. That is, use `sqrt` NOT `sqrtf` on floats.
Traits Class Templates

- Type-dependent constants, such as the machine epsilon, are obtained through a traits class defined in `<limits>`.
- Use `std::numeric_limits<Scalar>::epsilon()` rather than `FLT_EPSILON` in C++.
- Either specialize `std::numeric_limits` for your numerical classes or write your own traits class.
Example Code (before)

float smoothstep(float x)
{
 if (x < 0.0f)
 x = 0.0f;
 else if (x > 1.0f)
 x = 1.0f;
 return (3.0f - 2.0f * x) * x * x;
}
Example Code (after)

template <typename T>
T smoothstep(T x)
{
 if (x < T())
 x = T();
 else if (x > T(1))
 x = T(1);
 return (T(3) - T(2) * x) * x * x;
}
Dual Numbers in C++

- C++ has a standard class template `std::complex<T>` for complex numbers.
- We create a similar class template `Dual<T>` for dual numbers.
- `Dual<T>` defines constructors, accessors, operators, and standard math functions.
template <typename T>
class Dual
{
...
private:
 T mReal;
 T mDual;
};
Dual<T>:: Constructor

template<typename T>
Dual<T>:: Dual(T real = T(), T dual = T())
 : mReal(real)
 , mDual(dual)
{
}

...
Dual<Scalar> z1; // zero initialized
Dual<Scalar> z2(2); // zero dual part
Dual<Scalar> z3(2, 1);
Dual<T>:: operators

template <typename T>
Dual<T> operator*(Dual<T> a, Dual<T> b) {

 return Dual<T>(
 a.real() * b.real(),
 a.real() * b.dual() +
 a.dual() * b.real()
);
}
Dual<T>:: Standard Math

template <typename T>
Dual<T> sqrt(Dual<T> z)
{
 T tmp = sqrt(z.real());
 return Dual<T>(
 tmp,
 z.dual() / (T(2) * tmp)
);
}
Curve Tangent

- For a 3D curve

\[p(t) = (x(t), y(t), z(t)), \text{ where } t \in [a, b] \]

The tangent is

\[\frac{p'(t)}{\|p'(t)\|}, \text{ where } p'(t) = (x'(t), y'(t), z'(t)) \]
Curve Tangent

- Curve tangents are often computed by approximation:

\[
\frac{\mathbf{p}(t_1) - \mathbf{p}(t_0)}{\|\mathbf{p}(t_1) - \mathbf{p}(t_0)\|}, \quad \text{where} \quad t_1 = t_0 + h
\]

for tiny values of h.
Curve Tangent: Bad #1

\[\mathbf{P}(t_0), \mathbf{P}(t_1) \]
Curve Tangent: Bad #2

\[t_1 \text{ drops outside parameter domain } (t_1 > b) \]
Curve Tangent: Duals

- Make a curve function template using a class template for 3D vectors:

```cpp
template <typename T>
Vector3<T> curveFunc(T x);
```
Curve Tangent: Duals (cont’d)

- Call the curve function using a dual number \(x = \text{Dual<Scalar>}(t, 1) \), (add \(\varepsilon \) to parameter \(t \)):

\[
\text{Vector3<Dual<Scalar>> } y = \text{curveFunc(Dual<Scalar>)(t, 1)};
\]
Curve Tangent: Duals (cont’d)

• The real part is the evaluated position:
 \[
 \text{Vector3}<\text{Scalar}> \text{ position } = \text{ real}(y); \]

• The normalized dual part is the tangent at this position:
 \[
 \text{Vector3}<\text{Scalar}> \text{ tangent } = \text{ normalize}(\text{dual}(y)); \]
Line Geometry

- The line through points \(p \) and \(q \) can be expressed explicitly as:

\[
x(t) = p + (q - p)t,
\]

and

- Implicitly, as a set of points \(x \) for which:

\[
(q - p) \times x + p \times q = 0
\]
$\mathbf{p} \times \mathbf{q}$ is orthogonal to the plane $\mathbf{0pq}$, and its length is equal to the area of the parallelogram spanned by \mathbf{p} and \mathbf{q}.
Line Geometry

All points \mathbf{x} on the line \mathbf{pq} span with $\mathbf{q} - \mathbf{p}$ a parallelogram that has the same area and orientation as the one spanned by \mathbf{p} and \mathbf{q}.
Plücker Coordinates

- Plücker coordinates are 6-tuples of the form \((u_x, u_y, u_z, v_x, v_y, v_z)\), where

\[
\mathbf{u} = (u_x, u_y, u_z) = \mathbf{q} - \mathbf{p}, \quad \text{and}
\]

\[
\mathbf{v} = (v_x, v_y, v_z) = \mathbf{p} \times \mathbf{q}
\]
Plücker Coordinates (cont’d)

- For \((u_1:v_1)\) and \((u_2:v_2)\) directed lines, if
 \[
 u_1 \cdot v_2 + v_1 \cdot u_2
 \]
is zero: the lines intersect
positive: the lines cross right-handed
negative: the lines cross left-handed
Triangle vs. Ray

If the signs of permuted dot products of the ray and edges are all equal, then the ray intersects the triangle.
Plücker Coordinates and Duals

- Dual 3D vectors conveniently represent Plücker coordinates:

 \[
 \text{Vector3}\langle\text{Dual}\langle\text{Scalar}\rangle\rangle
 \]

- For a line \((u:v)\), \(u\) is the real part and \(v\) is the dual part.
Dot Product of Dual Vectors

- The dot product of dual vectors $\mathbf{u}_1 + \mathbf{v}_1\epsilon$ and $\mathbf{u}_2 + \mathbf{v}_2\epsilon$ is a dual number z, for which

 $$\text{real}(z) = \mathbf{u}_1 \cdot \mathbf{u}_2,$$
 $$\text{dual}(z) = \mathbf{u}_1 \cdot \mathbf{v}_2 + \mathbf{v}_1 \cdot \mathbf{u}_2$$

- The dual part is the permuted dot product
Angle of Dual Vectors

- For \(\mathbf{a} \) and \(\mathbf{b} \) dual vectors, we have

\[
\theta + d \varepsilon = \arccos\left(\frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \cdot ||\mathbf{b}||} \right)
\]

where \(\theta \) is the angle and \(d \) is the signed distance between the lines \(\mathbf{a} \) and \(\mathbf{b} \).
Translation

- Translation of lines only affects the dual part. Translation of line pq over c gives:
- Real: $(q + c) - (p + c) = q - p$
- Dual: $(p + c) \times (q + c) = p \times q + c \times (q - p)$
- $q - p$ pops up in the dual part!
Rotation

- Real and dual parts are rotated in the same way. For a rotation matrix R:
 - Real: $Rq - Rp = R(q - p)$
 - Dual: $Rp \times Rq = R(p \times q)$
- The latter holds for rotations only! That is, R performs no scaling or reflection.
Rigid-Body Transform

- For rotation matrix \mathbf{R} and translation vector \mathbf{c}, the dual 3×3 matrix \mathbf{M} with

 $\text{real}(\mathbf{M}) = \mathbf{R}$, and

 $\text{dual}(\mathbf{M}) = [\mathbf{c}]_\times \mathbf{R} = \begin{bmatrix} 0 & -c_z & c_y \\ c_z & 0 & -c_x \\ -c_y & c_x & 0 \end{bmatrix} \mathbf{R}$

maps Plücker coordinates to the new reference frame.
Screw Theory

- A screw motion is a rotation about a line and a translation along the same line.

- “Any rigid body displacement can be defined by a screw motion.” (Chasles)
Chasles’ Theorem (Sketchy Proof)

- Decompose translation into a term along the line and a term orthogonal to the line.
- Translation orthogonal to the axis of rotation offsets the axis.
- Translation along the axis does not care about the position of the axis.
Example: Rolling Ball
Dual Quaternions

- Unit dual quaternions represent screw motions.
- The rigid body transform over a unit quaternion q and vector c is:

$$q + \frac{1}{2} cq \varepsilon$$

Here, c is a quaternion with zero scalar part.
Where is the Screw?

• A unit dual quaternion can be written as

\[
\cos\left(\frac{\theta + d\varepsilon}{2}\right) + \sin\left(\frac{\theta + d\varepsilon}{2}\right)(u + v\varepsilon)
\]

where \(\theta\) is the rotation angle, \(d\), the translation distance, and \(u + v\varepsilon\), the line given in Plücker coordinates.
Two Conjugates

- For dual quaternion $q = q_r + q_d \varepsilon$, the dual conjugate is
 \[
 \bar{q} = q_r - q_d \varepsilon
 \]
- And the quaternion conjugate is
 \[
 q^* = q_r^* + q_d^* \varepsilon
 \]
Rigid-Body Transform Revisited

- Similar to 3D vectors, Plücker coordinates can be transformed using dual quaternions.
- The mapping of a dual vector \mathbf{v} according to a screw motion \mathbf{q} is

$$\mathbf{v}' = \mathbf{q} \mathbf{v} \mathbf{q}^*$$
Traditional Skinning

- Bones are defined by transformation matrices T_i relative to the rest pose.
- Each vertex is transformed as

$$p' = \lambda_1 T_1 p + \cdots + \lambda_n T_n p = (\lambda_1 T_1 + \cdots + \lambda_n T_n)p$$

Here, λ_i are blend weights.
Traditional Skinning (cont’d)

● A weighted sum of matrices is not necessarily a rigid-body transformation.
● Most notable artifact is “candy wrapper”: The skin collapses while transiting from one bone to the other.
Candy Wrapper
Dual Quaternion Skinning

- Use a blend operation that always returns a rigid-body transformation.
- Several options exists. The simplest one is a normalized lerp of dual quaternions:

\[q = \frac{\lambda_1 q_1 + \cdots + \lambda_n q_n}{\|\lambda_1 q_1 + \cdots + \lambda_n q_n\|} \]
Dual Quaternion Skinning (cont’d)

• Can the weighted sum of dual quaternions ever get zero?
• Not if all dual quaternions lie in the same hemisphere.
• Observe that \mathbf{q} and $-\mathbf{q}$ are the same pose. If necessary, negate each \mathbf{q}_i to dot positively with \mathbf{q}_0.
Points can also be transformed by dual quaternions. For a point \(p \), the image under transformation \(p' \) is obtained by

\[
1 + p' \varepsilon = q(1 + p \varepsilon)q^*
\]

Notice the use of both dual and quaternion conjugate!
Further Uses

- **Motor Algebra**: Linear and angular velocity of a rigid body combined in a dual 3D vector.

- **Spatial Vector Algebra**: Featherstone uses 6D vectors for representing velocities and forces in robot dynamics.
Conclusions

- Abstract from numerical types in your C++ code.
- Differentiation is easy, fast, and exact with dual numbers.
- Dual numbers have other uses as well. Explore yourself!
References

Thank You!

- For sample code, check out free* MoTo C++ template library on:

 http://www.dtecta.com

(*) gratis (as in “free beer”) and libre (as in “free speech”)