Know Thy Error

I don't know how to propagate error correctly, so I just put error bars on all my error bars.

xkcd.com, Creative Commons
Computer Numbers

- Digital computer number formats have limited precision.
- Results of arithmetic operations are rounded to the nearest representable value.
Fixed-point Numbers
Floating-point Numbers
Floating-point Format

- IEEE 754 single-precision (32-bit) format:

\[(-1)^{\text{sign}} \times 1.\text{fraction} \times 2^{\text{exponent} - 127} \]
Floating-point Format (cont’d)

- Zero is a special case: exponent and fraction are zero. Both +0 and –0 exist.
- Subnormal numbers: exponent is zero.

\[(-1)^{\text{sign}} \times 0.\text{fraction} \times 2^{-126} \]

Fills the gap between 0 and 2^{-126}.

A Little Story…
A Little Story... (cont’d)

- World coordinates are single-precision floats.
- The top of the mountain is far, far away (300km) from the world coordinate origin.
- The little blue engine moves by forward Euler:

\[\mathbf{p}_{n+1} = \mathbf{p}_n + \mathbf{v} h \]
A Little Story... (cont’d)

- The little engine tugged and pulled up the mountain and slowly, slowly, slowly, ...
- ... came to a grinding halt.
- What happened?
- At this distance from the origin $p_n + v_h$ is rounded to p_n even though v_h is not zero.
Big Worlds

- Prefer fixed-point for storing world coordinates.
- Fixed-point warrants same numerical behavior anywhere in your game world.
- Optionally, keep a float for storing the remainder after rounding to fixed-point unit.
- Also, prefer fixed-point for absolute time.
Relative Error

- For each real number $a \in [2^n, 2^{n+1}]$, there exists a floating-point number $\tilde{a} \in [2^n, 2^{n+1}]$, such that $|a - \tilde{a}| \leq 2^{n-p}$, where p is the precision (bit-width of fraction plus one).
Relative Error (cont’d)

- There exists an r, such that $\tilde{a} = a(1 + r)$, and $|r| \leq 2^{-p}$.
- $\varepsilon = 2^{-p}$ is the *machine epsilon*, an upper bound on the *relative error*.
- For single-precision, $\varepsilon = 2^{-24}$, which is half FLT_EPSILON (the difference between 1 and the smallest float > 1).
Relative Error (cont’d)

- A single rounding operation results in a relative error that is no greater than ε.
- Errors accumulate with each operation.
- Notably subtracting two almost equal floating-point values introduces a large relative error.
Cancellation

- We have numbers $\tilde{a} = a(1 + r_a)$ and $\tilde{b} = b(1 + r_b)$ already contaminated by rounding.
- The difference $d = a - b$ is computed as $\tilde{d} = (\tilde{a} - \tilde{b})(1 + \varepsilon) = (a - b)(1 + r_d)$, where

$$|r_d| \leq \frac{|a r_a| + |b r_b|}{|a - b|} + \varepsilon$$
Cancellation (cont’d)

• Suppose that a and b are almost equal. Then, $|r_d|$ can be huge.

\[
\begin{align*}
1.111111110001010110110110 & \times 2^{-5} \\
- 1.111111110001010110011110 & \times 2^{-5} \\
\hline
1.100000000000000000000000 & \times 2^{-25}
\end{align*}
\]
Cancellation (cont’d)

- In this example, the 20 least-significant bits (red zeroes) in the fraction are garbage.
- This loss of significant bits is called cancellation, and is the main source of numerical issues.
Example: Face Normals

- Compute normal of triangle by taking the cross product of two of its edges.

\[n = a \times b \]
Example: Face Normals (cont’d)

- Choice of edges is arbitrary. Length of cross product is always twice the triangle’s area.
Example: Face Normals (cont’d)

- Pick the two shortest edges for the smallest round-off error.
Order of Operations

- In floating-point arithmetic the following may not be true!

\[
\begin{align*}
 a + (b + c) &= (a + b) + c \\
 a(b + c) &= ab + ac
\end{align*}
\]

- The order in which operations are evaluated can have a great effect on the error.
Example: Determinants in GJK

- Johnson’s algorithm in GJK computes determinants as products of $y_i \cdot (y_j - y_k)$.
- Expressing these factors as $y_i \cdot y_j - y_i \cdot y_k$ is way less robust!
- Factorize! Always try to perform additions and subtractions before multiplications.
Automatic Error Tracing in C++

- Make floating-point types abstract types.
- Quickly tell a numerical issue from a bug by substituting double or higher precision.
- Maintain a bound for the relative error by substituting the `ErrorTracer` proxy class.
Abstract Numerical Types

- Never use built-in floating-point types, such as float or double, explicitly.
- Rather, use a type name, e.g. Scalar:

 using Scalar = float;

 And hide the actual float type in your code.
Abstract Numerical Types (cont’d)

- Never use `float` literals, C-style casts, or `static_cast` for initialization or conversion, e.g. use

 \[
 \text{Scalar}(2),
 \]

 rather than `2.0f`, `(Scalar)2`, or `static_cast<scalar>(2)`.
Abstract Numerical Types (cont’d)

- Use a traits class for type-dependent constants, e.g. use

  ```cpp
  std::numeric_limits<Scalar>::epsilon()
  ```

 rather than `FLT_EPSILON`.

GAME DEVELOPERS CONFERENCE
MARCH 18–22, 2019 | #GDC19
Abstract Numerical Types (cont’d)

- Use the overloaded C++ math functions from `<cmath>` rather than the C math functions from `<math.h>`, e.g. use

 \[\text{sqrt}(x) \text{ or } \text{std}::\text{sqrt}(x), \]

 rather than \[\text{sqrtf}(x) \text{ or } \text{std}::\text{sqrtf}(x). \]
ErrorTracer\textless T\textgreater

template <typename T>
class ErrorTracer
{
 ...
private:
 T mValue; // value of the scalar
 T mError; // max. relative error
};
template <typename T>
ErrorTracer<T> operator-(const ErrorTracer<T>& x,
 const ErrorTracer<T>& y)
{
 T value = x.value() - y.value();
 T error = abs(x.value()) * x.error() +
 abs(y.value()) * y.error();
 return ErrorTracer<T>(value,
 !iszero(value) ? error / abs(value) + T(1) : T());
}
template <typename T>
ErrorTracer<T> sqrt(const ErrorTracer<T>& x)
{
 return ErrorTracer<T>(sqrt(x.value()),
 x.error() * T(0.5) + T(1));
}
ErrorTracer<T>

- ErrorTracer transparently replaces built-in types:

```csharp
using Scalar = ErrorTracer<float>;
```
ErrorTracer<T> Reporting

- ErrorTracer reports the relative error

  ```
  float r = x.maxRelativeError();
  ```

- And the number of contaminated bits

  ```
  float b = x.dirtyBits();
  ```
True Relative Error

- FPUs may use higher precision for intermediate results (**FLT_EVAL_METHOD**).
- Therefore, the error returned by ErrorTracer may be hugely overestimated.
- Great for checking where precision is lost.
- YMMV, if you need tight upper bounds for error.
Conclusions

- Caution with floating-point types for position and absolute time.
- Choose a formulation that uses the smallest input values.
- Factorize! Additions and subtractions first.
- Abstract from numerical types in C++ code.
- Know the cause of precision loss.

Thank You!

Check me out on

- Web: www.dtecta.com
- Twitter: [@dtecta](https://twitter.com/dtecta)
- ErrorTracer C++ code available in MoTo: https://github.com/dtecta/motion-toolkit
Interval Arithmetic (bonus)

- Maintain an upper and lower bound of a computed value (true value included).
- Requires changing of FPU rounding policy.
- Tighter, yet computationally way more expensive, than ErrorTracer.
- Boost Interval Arithmetic Library implements this for C++.