
Rotational Joint Limits in
Quaternion Space

Gino van den Bergen
Dtecta

Rotational Joint Limits: 1 DoF

Image: Autodesk, Creative Commons

Rotational Joint Limits: 3 DoFs

Image: Autodesk, Creative Commons

Parameterize 3-DoF Rotations

● Ideally, we want a 3D parameter space
that is free of singularities, …

● … in which range bounds for shoulder and
hip joints can be intuitively expressed.

● If only 3D rotations would play so nicely…

3D Rotations Do Not Commute

Euler Angles

● Parameterize 3D rotation by angles of
rotation about three predefined axes.

● Choice of axes is arbitrary, as long as no
two consecutive axes are the same (for
example, XYZ, ZYX, XZX, YXY, …)

● Limit each angle independently.

Euler Angles (Cont’d)

Euler Angles (Cont’d)

● Euler angles space has singularities due
to collapsing axes (aka gimbal lock).

● Only suitable for joints formed by nested
gimbals.

● Totally unsuitable for shoulder and hip
joints.

Euler’s Rotation Theorem

“Any orientation of a 3D object
can be reached from an initial
orientation by executing a single
rotation about a suitable 3D axis.”

(Leonard Euler, 1775)

Axis-Angle Parameterization

● Axis is represented by a normalized 3D
vector (3 parameters, 2 DoFs!).

● Zero-angle rotations form a singularity
(axis is arbitrary).

● Hard to express joint limits.

Exponential Map Parameterization

● Scale axis by angle to form a 3D vector
with three independent parameters.

● Zero-angle rotation is represented
uniquely by the zero vector.

● Still has singularities for angles that are
multiples of 2𝜋 (360˚).

Exponential Map (Cont’d)

● Limit angle range to 0, 2𝜋 . This clears

out all singularities.

● We still have a double covering. Rotating
with angle 𝜃 about axis 𝐮 results in the
same orientation as rotating with angle
2𝜋 − 𝜃 about axis −𝐮.

Exponential Map (Cont’d)

● Limiting the angle range to 0, 𝜋 restricts
the double covering to angles of 𝜋.

● Parameterization space is a 3D ball with
radius 𝜋.

● Admissible orientations form a volume
inside the 3D ball.

Quaternions

● Quaternions extend complex numbers

q = w + xi + yj + zk

where w, x, y and z are real numbers

● w is the real or scalar part, and

● (x, y, z) is the imaginary or vector part.

Quaternions (cont’d)

● Quaternions behave as 4D vectors w.r.t.
addition and scaling.

● In multiplications, the imaginary units
resolve as: i2 = j2 = k2 = ijk = -1

● In scalar-vector notation, multiplication is
given by: [w1, v1][w2, v2] =
[w1w2 - v1 • v2, w1v2 + w2v1 + v1 × v2]

Unit Quaternions

● Unit quaternions (points on sphere in 4D)
form a multiplicative subgroup.

● A rotation with angle θ about unit vector
u is represented by unit quaternion

 cos
𝜃

2
, sin

𝜃

2
𝐮

Unit Quaternion Parameterization

● Unit quaternions are parameterized by
four dependent parameters (3 DoFs).

● 3D orientations are doubly covered: q
and -q represent the same orientation.

● Yet, for procedural animation quaternions
are generally the best choice.

Who Needs the Scalar Part?

● The scalar part w, less a sign, can be
found given the vector part v, since

 𝑤 = ± 1 − 𝐯 ∙ 𝐯

● Any orientation can be represented by a
unit quaternion with nonnegative w.

Quaternion Vectors

● Quaternion vectors parameterize
orientations using three independent
parameters.

● Zero vector is zero-angle rotation.

● Parameterization space is a unit ball.

● Only rotations over 𝜋 (unit vectors) are

doubly covered.

Quaternion Vectors (cont’d)

● Quaternion vectors map one-to-one to
exponential map vectors.

● For a quaternion vector v, the
corresponding exponential-map vector is

2 arcsin (𝐯)

𝐯
𝐯

Quaternions to Exponential Map

Quaternion Vectors Demo

Swing-Twist Decomposition

● Decompose rotation into a swing and
twist component…

𝐪 = 𝐪swing 𝐪twist

● …and, limit each component
independently.

Swing-Twist Decomposition

Swing-Twist Decomposition

● For 𝐪 = 𝑤 + 𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤 we find that

𝐪swing = 𝑠 +
𝑤𝑦 − 𝑥𝑧

𝑠
𝐣 +

𝑤𝑧 + 𝑥𝑦

𝑠
𝐤

 𝐪twist =
𝑤

𝑠
+

𝑥

𝑠
 𝐢 ,

where 𝑠 = 𝑤2 + 𝑥2

Clamp Swing to Elliptical Disk

● Quaternion Vector vs. Exponential Map

 120˚x 60˚ 180˚x 60˚

Clamp Swing to Elliptical Disk

● Map 2D points (j,k) outside the ellipse to
their closest point on the ellipse.

● The outside point lies on the line that is
normal to the ellipse and passes through
its closest point.

Clamp Swing to Elliptical Disk

Clamp Swing to Elliptical Disk

● A closed-form solution requires solving a
quartic (4th order) polynomial.

● Root finding using Newton-Raphson is
more accurate, and potentially faster.

● Incremental error correction is better
suited for smooth animation.

Newton-Raphson

Volume Limits

● Generalization of clamp to ellipsoid or
elliptic cylinder is straightforward.

● Clamping to other convex shapes can be
done using Gilbert-Johnson-Keerthi
(GJK).

References

● Gino van den Bergen. “Rotational Joint Limits in Quaternion Space”.
Game Engine Gems 3, Eric Lengyel (Ed.) (April 2016)

● Jim Van Verth. “Math for Game Programmers: Understanding
Quaternions” GDC 2013.

● F. Sebastian Grassia. “Practical parameterization of rotations using the
exponential map”. Journal of Graphics Tools, Vol. 3, No. 3 (March 1998),
pp. 29–48.

● E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. “A Fast Procedure for
Computing the Distance Between Complex Objects in Three-Dimensional
Space”. IEEE Journal of Robotics and Automation, Vol. 4, No. 2 (April
1988), pp. 193–203.

Thank You!

Check me out on

● Web: www.dtecta.com

● Twitter: @dtecta

● Sample code available in MoTo:
https://github.com/dtecta/motion-toolkit

http://www.dtecta.com/
https://twitter.com/dtecta
https://twitter.com/dtecta
https://twitter.com/dtecta
https://github.com/dtecta/motion-toolkit
https://github.com/dtecta/motion-toolkit
https://github.com/dtecta/motion-toolkit
https://github.com/dtecta/motion-toolkit
https://github.com/dtecta/motion-toolkit

