
Rotational Joint Limits in 
Quaternion Space 
 
Gino van den Bergen 
Dtecta 



Rotational Joint Limits: 1 DoF 
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Rotational Joint Limits: 3 DoFs 
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Parameterize 3-DoF Rotations  

● Ideally, we want a 3D parameter space 
that is free of singularities, … 

● … in which range bounds for shoulder and 
hip joints can be intuitively expressed.  

● If only 3D rotations would play so nicely… 

 



3D Rotations Do Not Commute 



Euler Angles 

● Parameterize 3D rotation by angles of 
rotation about three predefined axes. 

● Choice of axes is arbitrary, as long as no 
two consecutive axes are the same (for 
example, XYZ, ZYX, XZX, YXY, …) 

● Limit each angle independently. 



Euler Angles (Cont’d) 



Euler Angles (Cont’d) 

● Euler angles space has singularities due 
to collapsing axes (aka gimbal lock). 

● Only suitable for joints formed by nested 
gimbals. 

● Totally unsuitable for shoulder and hip 
joints.  

 



Euler’s Rotation Theorem 

“Any orientation of a 3D object 
can be reached from an initial 
orientation by executing a single 
rotation about a suitable 3D axis.” 
 
(Leonard Euler, 1775) 



Axis-Angle Parameterization 

● Axis is represented by a normalized 3D 
vector (3 parameters, 2 DoFs!). 

● Zero-angle rotations form a singularity 
(axis is arbitrary). 

● Hard to express joint limits. 

 



Exponential Map Parameterization 

● Scale axis by angle to form a 3D vector 
with three independent parameters. 

● Zero-angle rotation is represented 
uniquely by the zero vector. 

● Still has singularities for angles that are  
multiples of 2𝜋 (360˚). 



Exponential Map (Cont’d) 

● Limit angle range to 0, 2𝜋 . This clears 

out all singularities. 

● We still have a double covering. Rotating 
with angle 𝜃 about axis 𝐮 results in the 
same orientation as rotating with angle 
2𝜋 − 𝜃 about axis −𝐮. 



Exponential Map (Cont’d) 

● Limiting the angle range to 0, 𝜋  restricts 
the double covering to angles of 𝜋. 

● Parameterization space is a 3D ball with 
radius 𝜋. 

● Admissible orientations form a volume 
inside the 3D ball.  



Quaternions 

● Quaternions extend complex numbers 
 
q = w + xi + yj + zk  
 
where w, x, y and z are real numbers 

● w is the real or scalar part, and 

● (x, y, z) is the imaginary or vector part. 

 



Quaternions (cont’d) 

● Quaternions behave as 4D vectors w.r.t. 
addition and scaling.  

● In multiplications, the imaginary units 
resolve as: i2 = j2 = k2 = ijk = -1  

● In scalar-vector notation, multiplication is 
given by: [w1, v1][w2, v2] = 
[w1w2 - v1 • v2, w1v2 +  w2v1 + v1 × v2] 

 



Unit Quaternions 

● Unit quaternions (points on sphere in 4D) 
form a multiplicative subgroup. 

● A rotation with angle θ about unit vector 
u is represented by unit quaternion 

 cos
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Unit Quaternion Parameterization 

● Unit quaternions are parameterized by 
four dependent parameters (3 DoFs). 

● 3D orientations are doubly covered:  q 
and -q represent the same orientation. 

● Yet, for procedural animation quaternions 
are generally the best choice. 

 

 

 



Who Needs the Scalar Part? 

● The scalar part w, less a sign, can be 
found given the vector part v, since  
             

                  𝑤 =  ± 1 − 𝐯 ∙ 𝐯  

● Any orientation can be represented by a 
unit quaternion with nonnegative w. 

 



Quaternion Vectors 

● Quaternion vectors parameterize 
orientations using three independent 
parameters. 

● Zero vector is zero-angle rotation. 

● Parameterization space is a unit ball. 

● Only rotations over 𝜋 (unit vectors) are 

doubly covered. 



Quaternion Vectors (cont’d) 

● Quaternion vectors map one-to-one to 
exponential map vectors. 

● For a quaternion vector v, the 
corresponding exponential-map vector is 
 

2 arcsin ( 𝐯 )

𝐯
𝐯 



Quaternions to Exponential Map 

 

 



Quaternion Vectors Demo 



Swing-Twist Decomposition 

● Decompose rotation into a swing and 
twist component… 
 

𝐪 = 𝐪swing 𝐪twist 

● …and, limit each component 
independently. 



Swing-Twist Decomposition 



Swing-Twist Decomposition 

● For 𝐪 = 𝑤 + 𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤 we find that 

𝐪swing = 𝑠 +
𝑤𝑦 − 𝑥𝑧

𝑠
𝐣 +

𝑤𝑧 + 𝑥𝑦

𝑠
𝐤 

        𝐪twist =
𝑤

𝑠
+

𝑥

𝑠
 𝐢 , 

 

where      𝑠 = 𝑤2 + 𝑥2 



Clamp Swing to Elliptical Disk 

● Quaternion Vector vs. Exponential Map 
 
 
 
 
 
 
     120˚x 60˚                  180˚x 60˚ 

 



Clamp Swing to Elliptical Disk 

● Map 2D points (j,k) outside the ellipse to 
their closest point on the ellipse. 

● The outside point lies on the line that is 
normal to the ellipse and passes through 
its closest point. 



Clamp Swing to Elliptical Disk 



Clamp Swing to Elliptical Disk 

● A closed-form solution requires solving a 
quartic (4th order) polynomial. 

● Root finding using Newton-Raphson is  
more accurate, and potentially faster. 

● Incremental error correction is better 
suited for smooth animation. 



Newton-Raphson 



Volume Limits 

● Generalization of clamp to ellipsoid or 
elliptic cylinder is straightforward. 

● Clamping to other convex shapes can be 
done using Gilbert-Johnson-Keerthi 
(GJK). 
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Thank You! 

Check me out on 

● Web: www.dtecta.com 

● Twitter: @dtecta  

● Sample code available in MoTo: 
https://github.com/dtecta/motion-toolkit 
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