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Uhhh… Inverse Kinematics? 



Problem Description 

● We have a bunch of rigid bodies aka links 
(aka bones). 

● Pairs of links are connected by joints.  

● A joint limits the degrees of freedom 
(DoFs) of one link relative to the other. 

● Connection graph is a tree. No loops!  

 



Problem Description (cont’d) 

● Let’s consider 1-DoF joints only: 

● Revolute: single-axis rotation aka hinge. 

● Prismatic: single-axis translation aka slider. 

● Positions and velocities of links are 
defined by the values and speeds of the 
scalar joint parameters (angles, 
distances). 



Problem Description (cont’d) 

Link 

Link 
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Joint 



Problem Description (cont’d) 

● Given some constraints on the poses and 
velocities of one or more links, compute a 
vector of joint parameters that satisfies 
the constraints. 

● The constrained links are called end-
effectors, and are usually (but not per se) 
the end-links of a linkage.    



Free vs. Fixed Joints  

● Usually, only a few joints are free. Free 
joints are available for constraint 
resolution. 

● The other joints are controlled by forward 
kinematics. Their positions and velocities 
are fixed at a given instance of time. 



Part I: Angular Constraints 

 



Rotations in 3D 

● Have three degrees of freedom (DoFs). 

● Do not commute: R1R2 ≠ R2R1 

● Can be parameterized by three angles 
about predefined axes (Euler angles). 

● Angle parameterization is not ideal for 
doing math (gimbal lock). 



Quaternions 

● Quaternions extend complex numbers 
 
q = a + bi + cj + dk  
 
where a, b, c and d are real numbers 

● a is the real or scalar part, and 

● (b, c, d) is the imaginary or vector part. 

 



Quaternions (cont’d) 

● Quaternions behave as 4D vectors w.r.t. 
addition and scaling.  

● In multiplications, the imaginary units 
resolve as: i2 = j2 = k2 = ijk = -1  

● In scalar-vector notation, multiplication is 
given by: [s1, v1][s2, v2] = 
[s1s2 - v1 • v2, s1v2 +  s2v1 + v1 × v2] 

 



Quaternion Conjugate 

● The conjugate of quaternion q, denoted 
by q*, is defined by  
(a + bi + cj + dk)* = a - bi - cj - dk  

● Multiplication of a quaternion by its 
conjugate yields its squared magnitude: 
qq* = q*q = a2 + b2 + c2 + d2 

 

 



Unit Quaternions 

● Unit quaternions (points on sphere in 4D) 
form a multiplicative subgroup. 

● A rotation with angle θ about unit vector 
u is represented by unit quaternion 

 cos
𝜃

2
, sin

𝜃

2
𝐮   



Rotations using Unit Quaternions 

● The so-called sandwich product performs 
a rotation: v’ = q v q* 

● The vector v is regarded as a pure 
imaginary quaternion. 

● The conjugate is the inverse rotation: 
v = q* v’ q 

 

 

 



Kinematic Chain 

● In a chain of links, ri is the relative 
rotation from link i to its parent link i – 1.   

● The rotation from a link i to the world 
frame is simply qi = r1⋯ ri, the product of 
relative rotations in the chain up to link i. 

● The rotation from link i to link j is: qj*qi 
(even if i and j are on different chains). 

 

 



There’s a Twist… 

● Unit quaternions q and −q represent the 

same orientation. 

● For computing the rotation qj*qi from qi 

to qj, make sure that qi and qj point in the 
same direction (qi • qj > 0), if necessary, 
by negating either qi or qj. 

● Otherwise, qj*qi takes an extra spin.     
 
   

 



Angular Velocity 

● The angular velocity of a rigid body is a 
3D vector. 

● Its direction points along the rotation axis 
following the right-hand rule. 

● Its magnitude is the rotational speed in 
radians per second.  
 



Angular Velocity 

● Angular velocity is 
a proper vector:  

● The angular 
velocity of a link is 
the sum of all joint 
velocities along the 
chain.  

 



Angular Velocity Demo 



Joint Velocity 

● The directions of the joint axes 𝐚𝑖 form a 
vector space for the angular velocity 𝛚 of 
an end-effector: 

𝛚 = 𝐚1𝜃 1 +⋯+ 𝐚𝑛𝜃 𝑛 

● Here, 𝜃 𝑖 are the joint speeds in radians 
per second. 



Joint Velocity (cont’d) 

● In matrix notation this looks like 
  

𝛚 =
⋮ ⋮
𝐚1 ⋯ 𝐚𝑛
⋮ ⋮

𝜃 1
⋮
𝜃 𝑛

 

● The matrix columns are the n joint axes.  



Joint Axis Direction 

● Given qi, link i’s rotation relative to the 
world frame, the direction of the joint 
axis is the local rotation axis ui in world 
coordinates: 

𝐚𝑖 = 𝐪𝑖𝐮𝑖𝐪𝑖
∗ 



Velocity Constraints 

● A velocity constraint is defined by a linear 
function that maps velocities to vectors. 

● The dimension of the resulting vector is 
the number of constrained DoFs. 

● The constraint is satisfied if the function 
returns the target value (usually zero).  



Rotational Axis Constraint 

● Constrains the axis of rotation of an end-
effector link to some target axis. 

● For example, for constraint function 
  

𝐶 𝛚 = 𝛚x, 𝛚y ,  imposing   𝐶 𝛚 = 𝟎  

 
restricts the axis to the Z-axis.  

 



Constraint Matrix 

● A constraint involving a linear function 𝐶  
and target 𝐭 can be expressed as 
  

𝐶 𝛚 = 𝐶(
⋮ ⋮

𝐚1) ⋯ 𝐶(𝐚𝑛)

⋮ ⋮

𝜃 1
⋮
𝜃 𝑛

= 𝐭 



Free & Fixed Joint Parameters 

● Move the fixed joint parameters over to 
the right-hand side 
 

⋮ ⋮
𝐶(𝐚𝑙+1) ⋯ 𝐶(𝐚𝑛)

⋮ ⋮

𝜃 𝑙+1
⋮
𝜃 𝑛

= 𝐭 − 𝐶(𝐚1)𝜃 1 +⋯+ 𝐶(𝐚𝑙)𝜃 𝑙  

 

● Here, only 𝜃 𝑙+1to 𝜃 𝑛 are variables.  



Jacobian Matrix 

● The remaining matrix expresses the 
influence of variable joint speeds on the 
constraint function. 

● This is in fact the Jacobian matrix. 

● #rows = #constrained DoFs. 

● #colums = #free joint parameters.  

 



No Inverse 

● The Jacobian matrix generally does not 
have an inverse. 

● Often the matrix is not square, and thus 
not invertible. 

● Square Jacobians may not be invertible, 
since they can have dependent columns. 

 



Too Few Variables 

● The constraints fix more DoFs than there 
are variables: 

𝐽 = 𝐶(
⋮ ⋮

𝐚𝑛−1) 𝐶(𝐚𝑛
⋮ ⋮

)  

● Likely, no solution exists. We settle for a 
best-fit solution.  



Too Many Variables 

● The constraints fix fewer DoFs than there 
are variables: 

𝐽 =
⋮ ⋮

𝐶(𝐚𝑛−3) ⋯ 𝐶(𝐚𝑛)

⋮ ⋮

 

● Infinitely many solutions may exist. We 
seek the lowest speed solution.  



Pseudoinverse 

● The Moore-Penrose pseudoinverse 𝐽+ is 

 𝐽T𝐽
−1
𝐽T   if #rows ≥ #colums  

  𝐽T 𝐽𝐽T
−1

   if #rows ≤ #colums 

● Giving: 

𝜃 𝑙+1
⋮
𝜃 𝑛

= 𝐽+ 𝐭 − 𝐶(𝐚1)𝜃 1 +⋯+ 𝐶(𝐚𝑙)𝜃 𝑙  



Pseudoinverse (cont’d) 

● If no solution exists, returns a best-fit 
(least-squares) solution. 

● If infinitely many solutions exist, returns 
the least-norm (lowest speed) solution. 

● If an inverse exists, the pseudoinverse is 
the inverse.  



Computing the Pseudoinverse 

● 𝐽+can be computed using open-source 

linear-algebra packages (Eigen, 
Armadillo+LAPACK). 

● Cubic complexity! (𝑂 𝑛3  for n variables) 

● Decimate into smaller Jacobians, rather 
than solve one huge Jacobian.   

 



Gimbal Lock Demo 



Positional Error 

● Constraint solving happens at sampled 
intervals. 

● Jacobian is falsely assumed to be fixed 
in-between samples.  

● Positional error builds up (drift). 

 



Positional Error (cont’d) 

● Correct error by adding a stabilization 
term to the target vector: 

 
 
 

𝐽+ 𝐭 − 𝐶(𝐚1)𝜃 1 +⋯+ 𝐶(𝐚𝑙)𝜃 𝑙 + 𝐬  

Corrects 
error 



Positional Error (cont’d) 

● We choose 𝐬 = 𝐶(𝛚diff), where 𝛚diff is the 

angular velocity that closes the gap 
between 𝐪𝑛 and 𝐪𝑡 ,  
the orientations of 
resp. end-effector 
and target. 

𝐪𝑛 𝐪𝑡 

𝛚diff 



Positional Error (cont’d) 

● A useful approximation for 𝛚diff is the 
vector part of  

𝛽
2
ℎ
𝐪𝑡𝐪𝑛

∗ 

● Here, ℎ is the time interval. 

● Factor 𝛽 (< 1) relaxes correction speed. 

● N.B.: Mind the extra spin when 𝐪𝑛 • 𝐪𝑡< 0! 

 



Part II: Rigid-Body Constraints  

 



Chasles’ Theorem 

● A screw is a rotation about a 
line and a translation along 
the same line. 

● “Any rigid-body displacement 
can be defined by a screw.” 
(Michel Chasles, 1830) 

 



Chasles’ Theorem Demo 



Screw Theory 

● “By replacing vectors 
(directions) with Plücker 
coordinates (lines), point 
entities (angular velocity, 
force) transfer to rigid-body 
entities (twist, wrench).” 
(Sir Robert Stawell Ball, 1876) 

 



Dual Quaternions 

● Quaternion algebra is extended by 
introducing a dual unit ε. 

● Elements are 1, i, j, k, ε, iε, jε, and kε. 

● A dual quaternion is expressed as: 
   𝐪 = 𝐪 + 𝐪′𝜀 
We call 𝐪 the real part and 𝐪′ the dual 

part. 

 

 



Dual Quaternions (cont’d) 

● In multiplications, the dual unit resolves 
as ε2 =0, giving: 𝐪1 + 𝐪1

′ 𝜀 𝐪2 + 𝐪2
′ 𝜀  

 
 = 𝐪1𝐪2 + 𝐪1𝐪2

′ + 𝐪1
′ 𝐪2 𝜀 + 0  

  

● Real part is the product of real parts 
only; it does not depend on dual parts! 
  

 

 



Dual Quaternions (cont’d) 

● The conjugate of a dual quaternion: 
 
  𝐪 ∗ = (𝐪 + 𝐪′𝜀)∗= 𝐪∗ + 𝐪′

∗
𝜀 

 

● Multiplication of a dual quaternion by its 
conjugate yields its squared magnitude: 

𝐪 + 𝐪′𝜀 𝐪 + 𝐪′𝜀 ∗ = 𝐪𝐪∗ + 𝐪𝐪′
∗
+ 𝐪′𝐪∗ 𝜀 



Dual Quaternions (cont’d) 

● Unit dual quaternions (1 + 0𝜀) represent 

rigid body displacements aka poses.  

● The rigid body pose given by unit (real) 
quaternion 𝐪 and translation vector 𝐭 is: 
 

   𝐪 +
1

2
𝐭𝐪𝜀      

 

 

𝐭 is considered a pure 
imaginary quaternion 

(zero scalar part).  



Where is the Screw? 

● A unit dual quaternion can be written as 

 cos
𝜃 + 𝑑𝜀

2
, sin

𝜃 + 𝑑𝜀

2
(𝐮 + 𝐯𝜀)   

θ is the rotation angle,  
d is the translation distance, and  
u + v𝜀 is the screw axis as unit dual vector 

(Plücker coordinates). 



Linear Velocity 

● Linear velocity, unlike angular velocity, is 
bound to a point in space: 



Linear Velocity (cont’d) 

● Given angular velocity 𝛚, and linear 
velocity 𝐯 at point 𝐩, the linear velocity at 
an arbitrary point 𝐱 is 𝐯 + 𝛚 × (𝐱 − 𝐩). 

 

𝐩 
𝐱 



Plücker Coordinates 

● Angular and linear velocity are combined 
into a single entity represented by a dual 
vector (aka Plücker coordinates): 

𝐯 = 𝛚 + 𝐯𝑜𝜀 

● Here, 𝐯𝑜 is the linear velocity at the origin 
of the coordinate frame. 



Plücker Coordinates Demo 



Transforming Plücker Coordinates 

● The dual-quaternion sandwich product 
performs a rigid-body transformation on 
Plücker coordinates: 

𝐯′ = 𝐪  𝐯  𝐪 ∗ 

● This transformation preserves 

magnitude: 𝐯′  • 𝐯′  = 𝐯  • 𝐯   



Deja Vu? 

● The (combined) velocity of a link is the 
sum of all joint velocities along the chain.  

● The joint axes 𝐚 𝑖 form a vector space for 
the velocity 𝐯  of an end-effector: 

𝐯 = 𝐚 1𝜃 1 +⋯+ 𝐚 𝑛𝜃 𝑛 

● Here, 𝜃 𝑖 are the revolute and prismatic 

joint speeds. 

 

 



Deja Vu? (cont’d) 

● For 𝐪 𝑖, link i’s pose expressed in the 
world frame, 𝐮 𝑖, the local joint axis, the 
joint axis in world coordinates is 

𝐚 𝑖 = 𝐪 𝑖𝐮 𝑖𝐪 𝑖
∗
 

● For a revolute:   For a prismatic: 
𝐮 𝑖 = 𝐮𝑖 + 𝟎𝜀   𝐮 𝑖 = 𝟎 + 𝐯𝑖𝜀 

  

 



Deja Vu? (cont’d) 

● To correct the positional error between 
end-effector and target, we choose the 
correction velocity 𝐯 diff to be the vector 

part of 

𝛽
2
ℎ𝐪 𝑡𝐪 𝑛

∗
 

 



The Principle of Transference 

Angular Entities Rigid-body Entities 

Rotation unit quaternion Pose (screw) unit dual quaternion 

Angular 
velocity 

3-vector Combined 
velocity 

dual 3-vector 

Direction unit 3-vector Line unit dual 3-vector 

Rotation 
parameter 

angle (radians) Screw 
parameters 

dual angle (radians, 
meter) 

Spherical  
coordinates 
(azi, polar) 

pair of angles Denavit-
Hartenberg 
parameters 

pair of dual angles 
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Open-Source Code 

● Eigen: A C++ Linear Algebra Library. 
http://eigen.tuxfamily.org. License: MPL2 

● Armadillo: C++ Linear Algebra Library. 
http://arma.sourceforge.net. License: MPL2 

● LAPACK – Linear Algebra PACKage. 
http://www.netlib.org/lapack. License: BSD 

● MoTo C++ template library (dual quaternion code) 
https://code.google.com/p/motion-toolkit/. License: MIT 
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Thank You! 

My pursuits can be traced on: 

● Web: http://www.dtecta.com 

● Twitter: @dtecta  

● Or just mail me: gino@dtecta.com 
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