Math for Game Programmers: Inverse Kinematics

Gino van den Bergen gino@dtecta.com

Twitter: @dtecta

Uhhh... Inverse Kinematics?

Problem Description

- We have a bunch of rigid bodies aka links (aka bones).
- Pairs of links are connected by joints.
- A joint limits the degrees of freedom (DoFs) of one link relative to the other.
- Connection graph is a tree. No loops!

Problem Description (cont'd)

- Let's consider 1-DoF joints only:
- Revolute: single-axis rotation aka hinge.
- Prismatic: single-axis translation aka slider.
- Positions and velocities of links are defined by the values and speeds of the scalar joint parameters (angles, distances).

Problem Description (cont'd)

Problem Description (cont'd)

- Given some constraints on the poses and velocities of one or more links, compute a vector of joint parameters that satisfies the constraints.
- The constrained links are called endeffectors, and are usually (but not per se) the end-links of a linkage.

Free vs. Fixed Joints

- Usually, only a few joints are free. Free joints are available for constraint resolution.
- The other joints are controlled by forward kinematics. Their positions and velocities are fixed at a given instance of time.

Position and Orientation

- Each link maintains a pose, i.e. position and orientation, relative to its parent.
- Position is a 3D vector. Orientation is a rotation matrix or a quaternion.
- Position and orientation can be combined into a single entity as a dual quaternion.

Dual Quaternions

- Quaternion algebra is extended by introducing a dual unit ε, for which $\varepsilon^{2}=0$.
- Elements are $1, i, j, k, \varepsilon, i \varepsilon, j \varepsilon$, and $k \varepsilon$.
- A dual quaternion is expressed as:

$$
\widehat{\mathbf{q}}=\mathbf{q}+\mathbf{q}^{\prime} \varepsilon
$$

We call \mathbf{q} the real part and \mathbf{q}^{\prime} the dual part.

Dual Quaternions (cont'd)

- Multiplication gives: $\left(\mathbf{q}_{1}+\mathbf{q}_{1}^{\prime} \varepsilon\right)\left(\mathbf{q}_{2}+\mathbf{q}_{2}^{\prime} \varepsilon\right)$

$$
=\mathbf{q}_{1} \mathbf{q}_{2}+\left(\mathbf{q}_{1} \mathbf{q}_{2}^{\prime}+\mathbf{q}_{1}^{\prime} \mathbf{q}_{2}\right) \varepsilon+0
$$

- Real part is the product of real parts only; it does not depend on dual parts!

Dual Quaternions (cont'd)

- Unit dual quaternions represent poses.
- Given an orientation represented by a unit (real) quaternion \mathbf{q}, and a position by a 3D vector \mathbf{c}, the pose is represented by:

$$
\mathbf{q}+\frac{1}{2} \mathbf{c q} \varepsilon \quad \begin{gathered}
\mathbf{c} \text { is considered a pure } \\
\text { imaginary quaternion } \\
\text { (zero scalar part). }
\end{gathered}
$$

Dual Quaternions (cont'd)

- The conjugate of a dual quaternion:

$$
\widehat{\mathbf{q}}^{*}=\left(\mathbf{q}+\mathbf{q}^{\prime} \varepsilon\right)^{*}=\mathbf{q}^{*}+\mathbf{q}^{\prime *} \varepsilon
$$

- The inverse of a unit dual quaternion is its conjugate: $\left(\mathbf{q}+\mathbf{q}^{\prime} \varepsilon\right)\left(\mathbf{q}+\mathbf{q}^{\prime} \varepsilon\right)^{*}=$

$$
\mathbf{q q}^{*}+\left(\mathbf{q} \mathbf{q}^{\prime *}+\mathbf{q}^{\prime} \mathbf{q}^{*}\right) \varepsilon=1+0 \varepsilon
$$

Dual Quaternions (almost done)

- Given a pose $\widehat{\mathbf{q}}=\mathbf{q}+\mathbf{q}^{\prime} \varepsilon$,
- The orientation is simply \mathbf{q} (the real part).
- The position is given by $2 \mathbf{q}^{\prime} \mathbf{q}^{*}$.
- Exercise: Prove that for unit dual quaternions, $2 \mathbf{q}^{\prime} \mathbf{q}^{*}$ has a zero scalar part.

Hint:
$\mathbf{q q}^{*}+\left(\mathbf{q} \mathbf{q}^{\prime *}+\mathbf{q}^{\prime} \mathbf{q}^{*}\right) \varepsilon=1+0 \varepsilon$

Kinematic Chain

- In a chain of links, $\hat{\mathbf{r}}_{i}$ is the relative pose from link i to its parent link $i-1$.
- The pose from a link i to the world frame is simply $\widehat{\mathbf{q}}_{i}=\hat{\mathbf{r}}_{1} \cdots \hat{\mathbf{r}}_{i}$, the product of all relative poses in the chain up to link i.
- The pose from link i to link j is: $\widehat{\mathbf{q}}_{j}{ }^{*} \widehat{\mathbf{q}}_{i}$ (even if i and j are on different chains).

Relative Pose

- The relative pose is the product of a fixed pose and a variable pose: $\hat{\mathbf{r}}_{i}=\hat{\mathbf{x}}_{i} \hat{\mathbf{z}}_{i}$
- $\hat{\mathbf{x}}_{i}$ fixes the joint axis relative to the parent's frame.
- $\hat{\mathrm{z}}_{i}$ represents the joint's degree of freedom.

Relative Pose (cont'd)

Relative Pose (cont'd)

- W.I.o.g., we choose $\hat{\mathbf{x}}_{i}$ such that the joint axis is the z-axis of the new frame.
- For a revolute: $\hat{\mathbf{z}}_{i}=\cos \left(\frac{\theta}{2}\right)+\sin \left(\frac{\theta}{2}\right) k$, rotating θ radians about the local z-axis.
- For a prismatic: $\hat{\mathbf{z}}_{i}=1+\frac{d}{2} k \varepsilon$, translating d units along the local z-axis.

Positional Constraints

- Find a vector of joint parameters that satisfies constraints on the poses of the end-effectors. Examples:
- The feet of a character land firmly on an irregular terrain without interpenetration.
- The gaze of an NPC follows some target.
- The fingertip of a character presses a button.

Analytical Approach

- Sometimes joint parameters can be solved analytically,
$r=$ crank radius (half stroke)
$A=$ crank angle (from TDC)
$x=$ position of piston pin from crank center e.g. the position of a piston is determined by the crank angle.

Analytical Approach

- However, polynomials of degree 5 and up can generally not be solved analytically.
- Moreover, analytical solvers often yield multiple solutions which is less practical.
- Can't get a closest-fit solution if a solution does not exists.

Iterative Approach

- A constraint solution is approximated by taking many steps towards reducing the constraint error.
- Converges to the nearest local minimum, which may not be a proper solution (should one exist).

Cyclic Coordinate Descent (CCD)

- Iteratively solve each joint while keeping relative poses between other joints fixed.
- "Solving" means minimizing some error.
- Different strategies: Repeatedly
- Work from end-effector to base.
- Work from base to end-effector.

Cyclic Coordinate Descent

- Minimize distance

Cyclic Coordinate Descent

- Minimize distance

Cyclic Coordinate Descent

- Minimize distance

Cyclic Coordinate Descent

- Minimize distance

Cyclic Coordinate Descent

- Minimize distance

Cyclic Coordinate Descent

- Pros:
- Easy to implement
- Linear time complexity ($O(n)$ for n DoFs)
- Cons:
- May converge violently (requires relaxation).
- Not fit for multiple simultaneous constraints.

Velocity-based IK

- Satisfy positional constraints by solving joint speeds that move the end-effectors towards their desired poses.
- Best solution for interactive animation:
- Offers control over jerkiness.
- Ideal for following a moving target.

Angular Velocity

- The angular velocity of a rigid body is a 3D vector.
- Its direction points along the rotation axis following the right-hand rule.
- Its magnitude is the rotational speed in radians per second.

Angular Velocity

- Angular velocity is a proper vector:
- The angular velocity of a link is the sum of all joint velocities along the chain.

Joint Velocity

- The directions of the joint axes \mathbf{a}_{i} form a vector space for the angular velocity $\boldsymbol{\omega}$ of an end-effector:

$$
\boldsymbol{\omega}=\mathbf{a}_{1} \dot{\theta}_{1}+\cdots+\mathbf{a}_{n} \dot{\theta}_{n}
$$

- Here, $\dot{\theta}_{i}$ are the joint speeds in radians per second.

Joint Velocity

- In matrix notation this looks like

$$
\boldsymbol{\omega}=\left(\begin{array}{ccc}
\vdots & & \vdots \\
\mathbf{a}_{1} & \cdots & \mathbf{a}_{n} \\
\vdots & & \vdots
\end{array}\right)\left(\begin{array}{c}
\dot{\theta}_{1} \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right)
$$

- The matrix columns are the n joint axes.

Joint Axis Direction

- For $\widehat{\mathbf{q}}_{i}=\mathbf{q}_{i}+\mathbf{q}_{i}{ }^{\prime} \varepsilon$, link i^{\prime} s pose expressed in the world frame, the direction of the joint axis is the local z-axis in world coordinates:

$$
\mathbf{a}_{i}=\mathbf{q}_{i}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \mathbf{q}_{i}{ }^{*}
$$

Free \& Fixed Joint Parameters

- Move the fixed joint parameters over to the left-hand side

$$
\boldsymbol{\omega}-\left(\mathbf{a}_{1} \dot{\theta}_{1}+\cdots+\mathbf{a}_{l} \dot{\theta}_{l}\right)=\left(\begin{array}{ccc}
\vdots & & \vdots \\
\mathbf{a}_{l+1} & \cdots & \mathbf{a}_{n} \\
\vdots & & \vdots
\end{array}\right)\left(\begin{array}{c}
\dot{\theta}_{l+1} \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right)
$$

- Here, only $\dot{\theta}_{l+1}$ to $\dot{\theta}_{n}$ are variables.

Jacobian Matrix

- The remaining matrix expresses the influence of changing joint speeds on the angular velocity of the end-effector (link n).
- This is in fact the Jacobian matrix.
- \#rows = \#constrained DoFs.
- \#colums = \#free joint parameters.

No Inverse

- The Jacobian matrix generally does not have an inverse.
- Often the matrix is not square, and thus not invertible.
- Square Jacobians may not be invertible, since they can have dependent columns.

Too Few Variables

- The constraints fix more DoFs than there are variables:

$$
J=\left(\begin{array}{cc}
\vdots & \vdots \\
\mathbf{a}_{n-1} & \mathbf{a}_{n} \\
\vdots & \vdots
\end{array}\right)
$$

- Likely, no solution exists. We settle for a best-fit solution.

Too Many Variables

- The constraints fix fewer DoFs than there are variables:

$$
J=\left(\begin{array}{ccc}
\vdots & & \vdots \\
\mathbf{a}_{n-3} & \cdots & \mathbf{a}_{n} \\
\vdots & & \vdots
\end{array}\right)
$$

- Infinitely many solutions may exist. We seek the one with the lowest joint speeds.

Jacobian Transpose

- Quick-and-dirty solver:

$$
\left(\begin{array}{c}
\dot{\theta}_{l+1} \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right) \cong J^{\mathrm{T}}\left(\boldsymbol{\omega}-\left(\mathbf{a}_{1} \dot{\theta}_{1}+\cdots+\mathbf{a}_{l} \dot{\theta}_{l}\right)\right)
$$

- Good for getting the right trend, but no best-fit and no lowest joint speeds.

Jacobian Transpose (cont'd)

- Needs a relaxation factor β to home in on the sweet spot:

$$
\left(\begin{array}{c}
\dot{\theta}_{l+1} \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right)=\beta J^{\mathrm{T}}\left(\boldsymbol{\omega}-\left(\mathbf{a}_{1} \dot{\theta}_{1}+\cdots+\mathbf{a}_{l} \dot{\theta}_{l}\right)\right)
$$

- Still, convergence is slow and unpredictable.

Pseudoinverse

- The Moore-Penrose pseudoinverse J^{+}is defined as

$$
J^{+}=\left(J^{\mathrm{T}} J\right)^{-1} J^{\mathrm{T}}
$$

- Giving: $\left(\begin{array}{c}\dot{\theta}_{l+1} \\ \vdots \\ \dot{\theta}_{n}\end{array}\right)=J^{+}\left(\boldsymbol{\omega}-\left(\mathbf{a}_{1} \dot{\theta}_{1}+\cdots+\mathbf{a}_{l} \dot{\theta}_{l}\right)\right)$

Pseudoinverse (cont'd)

- If no solution exists, returns a best-fit (least-squares) solution.
- If infinitely many solutions exist, returns the least-norm (lowest speed) solution.
- If an inverse exists, the pseudoinverse is the inverse.

Computing the Pseudoinverse

- J^{+}can be computed using open-source linear-algebra packages (Eigen, Armadillo+ LAPACK).
- Cubic complexity! ($O\left(n^{3}\right)$ for n variables)
- Decimate into smaller Jacobians, rather than solve one huge Jacobian.

Orientation Alignment

- End-effector's world frame $\widehat{\mathbf{q}}_{n}$ is constrained to align with a target frame $\widehat{\mathbf{q}}_{t}$.
- For moving targets, end-effector's angular velocity equals the target frame's: $\boldsymbol{\omega}_{n}=\boldsymbol{\omega}_{t}$.
- Correct the alignment error by adding a correcting angular velocity to the target's.

Orientation Alignment (cont'd)

- For aligning an end-effector's orientation to a moving target, solve:

Corrects $$
\left(\begin{array}{c} \dot{\theta}_{l+1} \\ \vdots \\ \dot{\theta}_{n} \end{array}\right)=J^{+}\left(\boldsymbol{\omega}_{t}-\left(\mathbf{a}_{1} \dot{\theta}_{1}+\cdots+\mathbf{a}_{l} \dot{\theta}_{l}\right)-\boldsymbol{\omega}_{e}\right)
$$ error

 error}
Orientation Alignment (cont'd)

- As target velocity $\boldsymbol{\omega}_{e}$, we choose the vector part of $\beta_{\bar{h}}^{2} \mathbf{q}_{n} \mathbf{q}_{t}{ }^{*}$.
- Here, quaternions \mathbf{q}_{n} and \mathbf{q}_{t} are the orientations of resp. end-effector and target, and h is the time interval.
- Factor $\beta(<1)$ relaxes correction speed.

There's a Twist...

- Quaternions q and -q represent the same orientation.
- For computing $\boldsymbol{\omega}_{e}$, make sure that \mathbf{q}_{n} and \mathbf{q}_{t} point in the same direction $\left(\mathbf{q}_{n} \cdot \mathbf{q}_{t}>0\right)$.
- If not, then negate either \mathbf{q}_{n} or \mathbf{q}_{t} to take the shortest way home.

Linear Velocity

- Linear velocity, unlike angular velocity, is bound to a point in space:

Linear Velocity (cont'd)

- Given angular velocity ω, and linear velocity v at point \mathbf{p}, the linear velocity at an arbitrary point \mathbf{x} is $\mathbf{v}+\boldsymbol{\omega} \times(\mathbf{x}-\mathbf{p})$.

Plücker Coordinates

- Angular and linear velocity of a link are combined into a single entity represented by a dual vector (aka Plücker coordinates):

$$
\hat{\mathbf{v}}=\boldsymbol{\omega}+\mathbf{v}^{o} \varepsilon
$$

- Here, \mathbf{v}^{o} is the linear velocity at the origin of the coordinate frame.

Transforming Plücker Coordinates

- Plücker coordinates are transformed from one coordinate frame to another using the dual quaternion "sandwich" product: $\widehat{\mathbf{q}} \mathbf{v} \widehat{q}^{*}$
- Returns the image of velocity $\hat{\mathbf{v}}$ after rigid transformation by unit dual quaternion $\widehat{\mathbf{q}}$.

Deja Vu?

- The (combined) velocity of a link is the sum of all joint velocities along the chain.
- The joint axes $\hat{\mathbf{a}}_{i}$ form a vector space for the velocity $\hat{\mathbf{v}}$ of an end-effector:

$$
\hat{\mathbf{v}}=\hat{\mathbf{a}}_{1} \dot{\theta}_{1}+\cdots+\hat{\mathbf{a}}_{n} \dot{\theta}_{n}
$$

- Here, $\dot{\theta}_{i}$ are the revolute and prismatic joint speeds.

Deja Vu? (cont'd)

- For $\widehat{\mathbf{q}}_{i}=\mathbf{q}_{i}+\mathbf{q}_{i}{ }^{\prime} \varepsilon$, link i 's pose expressed in the world frame, the joint axis is the local z-axis in world coordinates:
- For a revolute:
$\hat{\mathbf{a}}_{i}=\widehat{\mathbf{q}}_{i}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \widehat{\mathbf{q}}_{i}{ }^{*}$
For a prismatic:

$$
\hat{\mathbf{a}}_{i}=\widehat{\mathbf{q}}_{i}\left(\begin{array}{l}
0 \\
0 \\
\varepsilon
\end{array}\right) \widehat{\mathbf{q}}_{i}^{*}
$$

Deja Vu? (cont'd)

- End-effector's world frame $\widehat{\mathbf{q}}_{n}$ is constrained to lock onto a target frame $\widehat{\mathbf{q}}_{t}$.
- For moving targets, end-effector's velocity equals the target frame's: $\hat{\mathbf{v}}_{n}=\hat{\mathbf{v}}_{t}$.
- To correct the error, we add the dual vector part of $\beta \frac{\bar{q}_{n}}{2} \widehat{\mathbf{q}}_{n} \widehat{\mathbf{q}}_{t}^{*}$ to the target velocity.

Emotion FX Demo

References

- K. Shoemake. Plücker Coordinate Tutorial. Ray Tracing News, Vol. 11, No. 1
- R. Featherstone. Spatial Vectors and Rigid Body Dynamics. http://royfeatherstone.org/spatial.
- L. Kavan et al. Skinning with dual quaternions. Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2007.
- G. van den Bergen. Math for Game Programmers:

Dual Numbers. GDC 2013 Tutorial.

Open-Source Code

- Eigen: A C++ Linear Algebra Library. http://eigen.tuxfamily.org. License: MPL2
- Armadillo: C++ Linear Algebra Library. http://arma.sourceforge.net. License: MPL2
- LAPACK - Linear Algebra PACKage. http://www.netlib.org/lapack. License: BSD
- MoTo C++ template library (dual quaternion code) https://code.google.com/p/motion-toolkit/. License: MIT

Thank You!

My pursuits can be traced on:

- Web: http://www.dtecta.com
- Twitter: @dtecta
- Or just mail me: gino@dtecta.com

