GBC Math for Game Programmers: **Inverse Kinematics** Gino van den Bergen gino@dtecta.com Twitter: @dtecta GAME DEVELOPERS CONFERENCE SAN FRANCISCO, CA MARCH 17-21, 2014 EXPO DATES: MARCH 10-21

Uhhh... Inverse Kinematics?

Problem Description

- We have a bunch of rigid bodies aka *links* (aka *bones*).
- Pairs of links are connected by *joints*.
- A joint limits the *degrees of freedom* (DoFs) of one link relative to the other.
- Connection graph is a tree. No loops!

Problem Description (cont'd)

- Let's consider 1-DoF joints only:
 - *Revolute*: single-axis rotation aka *hinge*.
 - *Prismatic*: single-axis translation aka *slider*.
- Positions and velocities of links are defined by the values and speeds of the scalar joint parameters (angles, distances).

Problem Description (cont'd)

Problem Description (cont'd)

 Given some constraints on the poses and velocities of one or more links, compute a vector of joint parameters that satisfies the constraints.

• The constrained links are called *endeffectors*, and are usually (but not per se) the end-links of a linkage.

Free vs. Fixed Joints

 Usually, only a few joints are free. Free joints are available for constraint resolution.

• The other joints are controlled by forward kinematics. Their positions and velocities are fixed at a given instance of time.

Position and Orientation

- Each link maintains a *pose, i.e.* position and orientation, relative to its parent.
- Position is a 3D vector. Orientation is a rotation matrix or a quaternion.
- Position and orientation can be combined into a single entity as a *dual quaternion*.

Dual Quaternions

- Quaternion algebra is extended by introducing a dual unit ε , for which $\varepsilon^2 = 0$.
- Elements are 1, *i*, *j*, *k*, *ε*, *iε*, *jε*, and *kε*.
- A dual quaternion is expressed as: $\hat{\mathbf{q}} = \mathbf{q} + \mathbf{q}' \varepsilon$

We call \mathbf{q} the *real* part and \mathbf{q}' the *dual* part.

Dual Quaternions (cont'd)

• Multiplication gives: $(\mathbf{q}_1 + \mathbf{q}'_1 \varepsilon)(\mathbf{q}_2 + \mathbf{q}'_2 \varepsilon)$

 $= \mathbf{q}_1 \mathbf{q}_2 + (\mathbf{q}_1 \mathbf{q}_2' + \mathbf{q}_1' \mathbf{q}_2)\varepsilon + \mathbf{0}$

 Real part is the product of real parts only; it does not depend on dual parts!

Dual Quaternions (cont'd)

- Unit dual quaternions represent poses.
- Given an orientation represented by a unit (real) quaternion q, and a position by a 3D vector c, the pose is represented by:

$$\mathbf{q} + \frac{1}{2}\mathbf{c}\mathbf{q}\varepsilon$$

c is considered a *pure* imaginary quaternion (zero scalar part).

Dual Quaternions (cont'd)

• The *conjugate* of a dual quaternion:

$$\widehat{\mathbf{q}}^* = (\mathbf{q} + \mathbf{q}'\varepsilon)^* = \mathbf{q}^* + \mathbf{q}'^*\varepsilon$$

• The *inverse* of a unit dual quaternion is its conjugate: $(\mathbf{q} + \mathbf{q}'\varepsilon)(\mathbf{q} + \mathbf{q}'\varepsilon)^* = \mathbf{q}\mathbf{q}^* + (\mathbf{q}\mathbf{q}'^* + \mathbf{q}'\mathbf{q}^*)\varepsilon = 1 + 0\varepsilon$

Dual Quaternions (almost done)

- Given a pose $\widehat{\mathbf{q}} = \mathbf{q} + \mathbf{q}' \varepsilon$,
- The orientation is simply q (the real part).
- The position is given by $2\mathbf{q}'\mathbf{q}^*$.
- Exercise: Prove that for unit dual quaternions, 2q'q* has a zero scalar part.

Hint: $qq^* + (qq'^* + q'q^*)\varepsilon = 1 + 0\varepsilon$

Kinematic Chain

• In a chain of links, $\hat{\mathbf{r}}_i$ is the relative pose from link *i* to its parent link *i* – 1.

• The pose from a link *i* to the world frame is simply $\hat{\mathbf{q}}_i = \hat{\mathbf{r}}_1 \cdots \hat{\mathbf{r}}_i$, the product of all relative poses in the chain up to link *i*.

• The pose from link *i* to link *j* is: $\hat{\mathbf{q}}_{j}^{*}\hat{\mathbf{q}}_{i}$ (even if *i* and *j* are on different chains).

Relative Pose

- The relative pose is the product of a fixed pose and a variable pose: $\hat{\mathbf{r}}_i = \hat{\mathbf{x}}_i \hat{\mathbf{z}}_i$
- $\hat{\mathbf{x}}_i$ fixes the joint axis relative to the parent's frame.
- $\hat{\mathbf{z}}_i$ represents the joint's degree of freedom.

Relative Pose (cont'd)

- $\hat{\mathbf{r}}_i = \hat{\mathbf{x}}_i \hat{\mathbf{z}}_i$
- $\hat{\mathbf{x}}_i$ (transparent) fixes joint axis.
- $\hat{\mathbf{z}}_i$ rotation about z-axis.

Relative Pose (cont'd)

- W.I.o.g., we choose $\hat{\mathbf{x}}_i$ such that the joint axis is the z-axis of the new frame.
- For a revolute: $\hat{\mathbf{z}}_i = \cos(\frac{\theta}{2}) + \sin(\frac{\theta}{2})k$, rotating θ radians about the local z-axis.
- For a prismatic: $\hat{z}_i = 1 + \frac{a}{2}k\varepsilon$, translating *d* units along the local z-axis.

Positional Constraints

• Find a vector of joint parameters that satisfies constraints on the poses of the end-effectors. Examples:

- The feet of a character land firmly on an irregular terrain without interpenetration.
- The gaze of an NPC follows some target.
- The fingertip of a character presses a button.

Analytical Approach

 Sometimes joint parameters can be solved analytically,
 e.g. the position of a piston is determined by the crank angle.

Analytical Approach

- However, polynomials of degree 5 and up can generally not be solved analytically.
- Moreover, analytical solvers often yield multiple solutions which is less practical.
- Can't get a closest-fit solution if a solution does not exists.

Iterative Approach

• A constraint solution is approximated by taking many steps towards reducing the constraint error.

 Converges to the nearest local minimum, which may not be a proper solution (should one exist).

Cyclic Coordinate Descent (CCD)

- Iteratively solve each joint while keeping relative poses between other joints fixed.
- "Solving" means minimizing some error.
- Different strategies: Repeatedly
 - Work from end-effector to base.
 - Work from base to end-effector.

- Pros:
 - Easy to implement
 - Linear time complexity (O(n) for n DoFs)
- Cons:
 - May converge violently (requires relaxation).
 - Not fit for multiple simultaneous constraints.

Velocity-based IK

• Satisfy positional constraints by solving joint speeds that move the end-effectors towards their desired poses.

- Best solution for interactive animation:
 - Offers control over jerkiness.
 - Ideal for following a moving target.

Angular Velocity

- The *angular velocity* of a rigid body is a 3D vector.
- Its *direction* points along the rotation axis following the right-hand rule.
- Its *magnitude* is the rotational speed in radians per second.

Angular Velocity

- Angular velocity is a proper vector:
- The angular velocity of a link is the sum of all joint velocities along the chain.

Joint Velocity

• The directions of the joint axes a_i form a vector space for the angular velocity ω of an end-effector:

$$\boldsymbol{\omega} = \mathbf{a}_1 \dot{\theta}_1 + \dots + \mathbf{a}_n \dot{\theta}_n$$

• Here, $\dot{\theta}_i$ are the joint speeds in radians per second.

Joint Velocity

• In matrix notation this looks like

$$\boldsymbol{\omega} = \begin{pmatrix} \vdots & \vdots \\ \mathbf{a}_1 & \cdots & \mathbf{a}_n \\ \vdots & \vdots \end{pmatrix} \begin{pmatrix} \dot{\theta}_1 \\ \vdots \\ \dot{\theta}_n \end{pmatrix}$$

• The matrix columns are the *n* joint axes.

Joint Axis Direction

• For $\hat{\mathbf{q}}_i = \mathbf{q}_i + \mathbf{q}_i' \varepsilon$, link *i*'s pose expressed in the world frame, the direction of the joint axis is the local z-axis in world coordinates:

$$\mathbf{a}_i = \mathbf{q}_i \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \mathbf{q}_i^*$$

Free & Fixed Joint Parameters

 Move the fixed joint parameters over to the left-hand side

$$\boldsymbol{\omega} - (\mathbf{a}_1 \dot{\theta}_1 + \dots + \mathbf{a}_l \dot{\theta}_l) = \begin{pmatrix} \vdots & \vdots \\ \mathbf{a}_{l+1} & \cdots & \mathbf{a}_n \\ \vdots & \vdots \end{pmatrix} \begin{pmatrix} \dot{\theta}_{l+1} \\ \vdots \\ \dot{\theta}_n \end{pmatrix}$$

• Here, only $\dot{\theta}_{l+1}$ to $\dot{\theta}_n$ are variables.

Jacobian Matrix

• The remaining matrix expresses the influence of changing joint speeds on the angular velocity of the end-effector (link *n*).

- This is in fact the *Jacobian* matrix.
- #rows = #constrained DoFs.
- #colums = #free joint parameters.

No Inverse

• The Jacobian matrix generally does not have an inverse.

- Often the matrix is not square, and thus not invertible.
- Square Jacobians may not be invertible, since they can have dependent columns.

Too Few Variables

• The constraints fix more DoFs than there are variables:

$$J = \begin{pmatrix} \vdots & \vdots \\ \mathbf{a}_{n-1} & \mathbf{a}_n \\ \vdots & \vdots \end{pmatrix}$$

 Likely, no solution exists. We settle for a best-fit solution.

Too Many Variables

• The constraints fix fewer DoFs than there are variables:

$$J = \begin{pmatrix} \vdots & \vdots \\ \mathbf{a}_{n-3} & \cdots & \mathbf{a}_n \\ \vdots & \vdots \end{pmatrix}$$

• Infinitely many solutions may exist. We seek the one with the lowest joint speeds.

Jacobian Transpose

• Quick-and-dirty solver:

$$\begin{pmatrix} \dot{\theta}_{l+1} \\ \vdots \\ \dot{\theta}_n \end{pmatrix} \cong J^{\mathrm{T}} \left(\boldsymbol{\omega} - \left(\mathbf{a}_1 \dot{\theta}_1 + \dots + \mathbf{a}_l \dot{\theta}_l \right) \right)$$

 Good for getting the right trend, but no best-fit and no lowest joint speeds.

Jacobian Transpose (cont'd)

• Needs a relaxation factor β to home in on the sweet spot:

$$\begin{pmatrix} \dot{\theta}_{l+1} \\ \vdots \\ \dot{\theta}_n \end{pmatrix} = \beta J^{\mathrm{T}} \left(\boldsymbol{\omega} - \left(\mathbf{a}_1 \dot{\theta}_1 + \dots + \mathbf{a}_l \dot{\theta}_l \right) \right)$$

• Still, convergence is slow and unpredictable.

Pseudoinverse

• The Moore-Penrose *pseudoinverse J*⁺ is defined as

$$J^+ = \left(J^{\mathrm{T}}J\right)^{-1}J^{\mathrm{T}}$$

• Giving: $\begin{pmatrix} \dot{\theta}_{l+1} \\ \vdots \\ \dot{\theta}_n \end{pmatrix} = J^+ \left(\boldsymbol{\omega} - \left(\mathbf{a}_1 \dot{\theta}_1 + \dots + \mathbf{a}_l \dot{\theta}_l \right) \right)$

Pseudoinverse (cont'd)

- If no solution exists, returns a best-fit (least-squares) solution.
- If infinitely many solutions exist, returns the least-norm (lowest speed) solution.
- If an inverse exists, the pseudoinverse is the inverse.

Computing the Pseudoinverse

• J⁺can be computed using open-source linear-algebra packages (Eigen, Armadillo+ LAPACK).

- Cubic complexity! ($O(n^3)$ for *n* variables)
- Decimate into smaller Jacobians, rather than solve one huge Jacobian.

Orientation Alignment

- End-effector's world frame $\hat{\mathbf{q}}_n$ is constrained to align with a target frame $\hat{\mathbf{q}}_t$.
- For moving targets, end-effector's angular velocity equals the target frame's: $\omega_n = \omega_t$.
- Correct the alignment error by adding a correcting angular velocity to the target's.

Orientation Alignment (cont'd)

• For aligning an end-effector's orientation to a moving target, solve:

$$\begin{pmatrix} \dot{\theta}_{l+1} \\ \vdots \\ \dot{\theta}_n \end{pmatrix} = J^+ (\boldsymbol{\omega}_t - (\mathbf{a}_1 \dot{\theta}_1 + \dots + \mathbf{a}_l \dot{\theta}_l) - \boldsymbol{\omega}_e)$$

Orientation Alignment (cont'd)

- As target velocity $\boldsymbol{\omega}_e$, we choose the vector part of $\beta_h^2 \mathbf{q}_n \mathbf{q}_t^*$.
- Here, quaternions \mathbf{q}_n and \mathbf{q}_t are the orientations of resp. end-effector and target, and h is the time interval.
- Factor β (< 1) relaxes correction speed.

There's a Twist...

- Quaternions \mathbf{q} and $-\mathbf{q}$ represent the same orientation.
- For computing ω_e , make sure that \mathbf{q}_n and \mathbf{q}_t point in the same direction $(\mathbf{q}_n \cdot \mathbf{q}_t > 0)$.
- If not, then negate either \mathbf{q}_n or \mathbf{q}_t to take the shortest way home.

Linear Velocity

• Linear velocity, unlike angular velocity, is bound to a point in space:

Linear Velocity (cont'd)

• Given angular velocity ω , and linear velocity \mathbf{v} at point \mathbf{p} , the linear velocity at an arbitrary point \mathbf{x} is $\mathbf{v} + \boldsymbol{\omega} \times (\mathbf{x} - \mathbf{p})$.

Plücker Coordinates

• Angular and linear velocity of a link are combined into a single entity represented by a dual vector (aka *Plücker coordinates*): $\hat{\mathbf{v}} = \mathbf{\omega} + \mathbf{v}^o \varepsilon$

• Here, v^o is the linear velocity at the origin of the coordinate frame.

Transforming Plücker Coordinates

• Plücker coordinates are transformed from one coordinate frame to another using the dual quaternion "sandwich" product: $\widehat{q}\widehat{v}\widehat{q}^*$

• Returns the image of velocity $\hat{\mathbf{v}}$ after *rigid transformation* by unit dual quaternion $\hat{\mathbf{q}}$.

Deja Vu?

• The (combined) velocity of a link is the sum of all joint velocities along the chain.

• The joint axes \hat{a}_i form a vector space for the velocity \hat{v} of an end-effector:

$$\hat{\mathbf{v}} = \hat{\mathbf{a}}_1 \dot{\theta}_1 + \dots + \hat{\mathbf{a}}_n \dot{\theta}_n$$

• Here, $\dot{\theta}_i$ are the revolute and prismatic joint speeds.

Deja Vu? (cont'd)

• For $\hat{\mathbf{q}}_i = \mathbf{q}_i + \mathbf{q}_i \varepsilon$, link *i*'s pose expressed in the world frame, the joint axis is the local z-axis in world coordinates:

• For a revolute

$$\widehat{\mathbf{a}}_{i} = \widehat{\mathbf{q}}_{i} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \widehat{\mathbf{q}}_{i}^{*}$$

For a prismatic: $\widehat{\mathbf{a}}_{i} = \widehat{\mathbf{q}}_{i} \begin{pmatrix} 0 \\ 0 \\ \varepsilon \end{pmatrix} \widehat{\mathbf{q}}_{i}^{*}$

Deja Vu? (cont'd)

- End-effector's world frame $\hat{\mathbf{q}}_n$ is constrained to lock onto a target frame $\hat{\mathbf{q}}_t$.
- For moving targets, end-effector's velocity equals the target frame's: $\hat{\mathbf{v}}_n = \hat{\mathbf{v}}_t$.
- To correct the error, we add the dual vector part of $\beta_{\overline{h}}^2 \widehat{\mathbf{q}}_n \widehat{\mathbf{q}}_t^*$ to the target velocity.

Emotion FX Demo

References

- K. Shoemake. *Plücker Coordinate Tutorial*. <u>Ray Tracing</u> <u>News, Vol. 11, No. 1</u>
- R. Featherstone. *Spatial Vectors and Rigid Body Dynamics*. <u>http://royfeatherstone.org/spatial</u>.
- L. Kavan et al. Skinning with dual quaternions. *Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games*, 2007.
- G. van den Bergen. *Math for Game Programmers: Dual Numbers*. <u>GDC 2013 Tutorial</u>.

Open-Source Code

- *Eigen: A C++ Linear Algebra Library*. <u>http://eigen.tuxfamily.org</u>. License: MPL2
- Armadillo: C++ Linear Algebra Library. http://arma.sourceforge.net. License: MPL2
- LAPACK Linear Algebra PACKage. http://www.netlib.org/lapack. License: BSD
- MoTo C++ template library (dual quaternion code)
 <u>https://code.google.com/p/motion-toolkit/</u>. License: MIT

Thank You!

My pursuits can be traced on:

- Web: <u>http://www.dtecta.com</u>
- Twitter: <u>@dtecta</u>
- Or just mail me: <u>gino@dtecta.com</u>