
Math for Game Programmers:
Inverse Kinematics

Gino van den Bergen
gino@dtecta.com
Twitter: @dtecta

mailto:gino@dtecta.com
https://twitter.com/dtecta
https://twitter.com/dtecta
https://twitter.com/dtecta

Uhhh… Inverse Kinematics?

Problem Description

● We have a bunch of rigid bodies aka links
(aka bones).

● Pairs of links are connected by joints.

● A joint limits the degrees of freedom
(DoFs) of one link relative to the other.

● Connection graph is a tree. No loops!

Problem Description (cont’d)

● Let’s consider 1-DoF joints only:

● Revolute: single-axis rotation aka hinge.

● Prismatic: single-axis translation aka slider.

● Positions and velocities of links are
defined by the values and speeds of the
scalar joint parameters (angles, distances).

Problem Description (cont’d)

Link

Link

Revolute
Joint

Problem Description (cont’d)

● Given some constraints on the poses and
velocities of one or more links, compute a
vector of joint parameters that satisfies the
constraints.

● The constrained links are called end-
effectors, and are usually (but not per se)
the end-links of a linkage.

Free vs. Fixed Joints

● Usually, only a few joints are free. Free
joints are available for constraint
resolution.

● The other joints are controlled by forward
kinematics. Their positions and velocities
are fixed at a given instance of time.

Position and Orientation

● Each link maintains a pose, i.e. position
and orientation, relative to its parent.

● Position is a 3D vector. Orientation is a
rotation matrix or a quaternion.

● Position and orientation can be combined
into a single entity as a dual quaternion.

Dual Quaternions

● Quaternion algebra is extended by
introducing a dual unit ε, for which ε2 = 0.

● Elements are 1, i, j, k, ε, iε, jε, and kε.

● A dual quaternion is expressed as:
 𝐪 = 𝐪 + 𝐪′𝜀
We call 𝐪 the real part and 𝐪′ the dual part.

Dual Quaternions (cont’d)

● Multiplication gives: 𝐪1 + 𝐪1
′ 𝜀 𝐪2 + 𝐪2

′ 𝜀

 = 𝐪1𝐪2 + 𝐪1𝐪2

′ + 𝐪1
′ 𝐪2 𝜀 + 0

● Real part is the product of real parts only;
it does not depend on dual parts!

Dual Quaternions (cont’d)

● Unit dual quaternions represent poses.

● Given an orientation represented by a
unit (real) quaternion 𝐪, and a position by a
3D vector 𝐜, the pose is represented by:

 𝐪 +
1

2
𝐜𝐪𝜀

𝐜 is considered a pure

imaginary quaternion
(zero scalar part).

Dual Quaternions (cont’d)

● The conjugate of a dual quaternion:

 𝐪 ∗ = (𝐪 + 𝐪′𝜀)∗= 𝐪∗ + 𝐪′

∗
𝜀

● The inverse of a unit dual quaternion is its
conjugate: 𝐪 + 𝐪′𝜀 𝐪 + 𝐪′𝜀 ∗ =
 𝐪𝐪∗ + 𝐪𝐪′

∗
+ 𝐪′𝐪∗ 𝜀 = 1 + 0𝜀

Dual Quaternions (almost done)

● Given a pose 𝐪 = 𝐪 + 𝐪′𝜀,

● The orientation is simply 𝐪 (the real part).

● The position is given by 2𝐪′𝐪∗.

● Exercise: Prove that for unit dual
quaternions, 2𝐪′𝐪∗ has a zero scalar part.

 Hint: 𝐪𝐪∗ + 𝐪𝐪′

∗
+ 𝐪′𝐪∗ 𝜀 = 1 + 0𝜀

Kinematic Chain

● In a chain of links, 𝐫 𝑖 is the relative pose

from link i to its parent link i – 1.

● The pose from a link i to the world frame
is simply 𝐪 𝑖 = 𝐫 1⋯𝐫 𝑖, the product of all
relative poses in the chain up to link i.

● The pose from link i to link j is: 𝐪 𝑗
∗
𝐪 𝑖

(even if i and j are on different chains).

Relative Pose

● The relative pose is the product of a fixed
pose and a variable pose: 𝐫 𝑖 = 𝐱 𝑖𝐳 𝑖

● 𝐱 𝑖 fixes the joint axis relative to the

parent’s frame.

● 𝐳 𝑖 represents the joint’s degree of
freedom.

Relative Pose (cont’d)

● 𝐫 𝑖 = 𝐱 𝑖𝐳 𝑖

● 𝐱 𝑖 (transparent)
fixes joint axis.

● 𝐳 𝑖 rotation
about z-axis.

𝐱 𝐱 𝑖𝑖

Relative Pose (cont’d)

● W.l.o.g., we choose 𝐱 𝑖 such that the joint

axis is the z-axis of the new frame.

● For a revolute: 𝐳 𝑖 = cos 𝜃

2
+ sin 𝜃

2
𝑘,

rotating θ radians about the local z-axis.

● For a prismatic: 𝐳 𝑖 = 1 +
𝑑

2
𝑘𝜀,

translating d units along the local z-axis.

Positional Constraints

● Find a vector of joint parameters that
satisfies constraints on the poses of the
end-effectors. Examples:

● The feet of a character land firmly on an
irregular terrain without interpenetration.

● The gaze of an NPC follows some target.

● The fingertip of a character presses a button.

Analytical Approach

● Sometimes joint
parameters can be
solved analytically,
e.g. the position of a
piston is determined
by the crank angle.

Analytical Approach

● However, polynomials of degree 5 and up
can generally not be solved analytically.

● Moreover, analytical solvers often yield
multiple solutions which is less practical.

● Can’t get a closest-fit solution if a solution
does not exists.

Iterative Approach

● A constraint solution is approximated by
taking many steps towards reducing the
constraint error.

● Converges to the nearest local minimum,
which may not be a proper solution (should
one exist).

Cyclic Coordinate Descent (CCD)

● Iteratively solve each joint while keeping
relative poses between other joints fixed.

● “Solving” means minimizing some error.

● Different strategies: Repeatedly

● Work from end-effector to base.

● Work from base to end-effector.

Cyclic Coordinate Descent

● Minimize distance

Cyclic Coordinate Descent

● Minimize distance

Cyclic Coordinate Descent

● Minimize distance

Cyclic Coordinate Descent

● Minimize distance

Cyclic Coordinate Descent

● Minimize distance

Cyclic Coordinate Descent

● Pros:

● Easy to implement

● Linear time complexity (O(n) for n DoFs)

● Cons:

● May converge violently (requires relaxation).

● Not fit for multiple simultaneous constraints.

Velocity-based IK

● Satisfy positional constraints by solving
joint speeds that move the end-effectors
towards their desired poses.

● Best solution for interactive animation:

● Offers control over jerkiness.

● Ideal for following a moving target.

Angular Velocity

● The angular velocity of a rigid body is a
3D vector.

● Its direction points along the rotation axis
following the right-hand rule.

● Its magnitude is the rotational speed in
radians per second.

Angular Velocity

● Angular velocity is a
proper vector:

● The angular velocity
of a link is the sum of
all joint velocities
along the chain.

Joint Velocity

● The directions of the joint axes 𝐚𝑖 form a
vector space for the angular velocity 𝛚 of
an end-effector:

𝛚 = 𝐚1𝜃 1 +⋯+ 𝐚𝑛𝜃 𝑛

● Here, 𝜃 𝑖 are the joint speeds in radians
per second.

Joint Velocity

● In matrix notation this looks like

𝛚 =
⋮ ⋮
𝐚1 ⋯ 𝐚𝑛
⋮ ⋮

𝜃 1
⋮
𝜃 𝑛

● The matrix columns are the n joint axes.

Joint Axis Direction

● For 𝐪 𝑖 = 𝐪𝑖 + 𝐪𝑖′𝜀, link i’s pose expressed in

the world frame, the direction of the joint
axis is the local z-axis in world coordinates:

𝐚𝑖 = 𝐪𝑖

0
0
1

𝐪𝑖
∗

Free & Fixed Joint Parameters

● Move the fixed joint parameters over to
the left-hand side

𝛚− (𝐚1𝜃 1 +⋯+ 𝐚𝑙𝜃 𝑙) =
⋮ ⋮

𝐚𝑙+1 ⋯ 𝐚𝑛
⋮ ⋮

𝜃 𝑙+1
⋮
𝜃 𝑛

● Here, only 𝜃 𝑙+1to 𝜃 𝑛 are variables.

Jacobian Matrix

● The remaining matrix expresses the
influence of changing joint speeds on the
angular velocity of the end-effector (link n).

● This is in fact the Jacobian matrix.

● #rows = #constrained DoFs.

● #colums = #free joint parameters.

No Inverse

● The Jacobian matrix generally does not
have an inverse.

● Often the matrix is not square, and thus
not invertible.

● Square Jacobians may not be invertible,
since they can have dependent columns.

Too Few Variables

● The constraints fix more DoFs than there
are variables:

𝐽 =
⋮ ⋮

𝐚𝑛−1 𝐚𝑛
⋮ ⋮

● Likely, no solution exists. We settle for a
best-fit solution.

Too Many Variables

● The constraints fix fewer DoFs than there
are variables:

𝐽 =
⋮ ⋮

𝐚𝑛−3 ⋯ 𝐚𝑛
⋮ ⋮

● Infinitely many solutions may exist. We
seek the one with the lowest joint speeds.

Jacobian Transpose

● Quick-and-dirty solver:

𝜃 𝑙+1
⋮
𝜃 𝑛

≅ 𝐽T 𝛚− 𝐚1𝜃 1 +⋯+ 𝐚𝑙𝜃 𝑙

● Good for getting the right trend, but no
best-fit and no lowest joint speeds.

Jacobian Transpose (cont’d)

● Needs a relaxation factor 𝛽 to home in on
the sweet spot:

𝜃 𝑙+1
⋮
𝜃 𝑛

= 𝛽𝐽T 𝛚− 𝐚1𝜃 1 +⋯+ 𝐚𝑙𝜃 𝑙

● Still, convergence is slow and
unpredictable.

Pseudoinverse

● The Moore-Penrose pseudoinverse 𝐽+ is

defined as

𝐽+ = 𝐽T𝐽
−1
𝐽T

● Giving:
𝜃 𝑙+1
⋮
𝜃 𝑛

= 𝐽+ 𝛚− 𝐚1𝜃 1 +⋯+ 𝐚𝑙𝜃 𝑙

Pseudoinverse (cont’d)

● If no solution exists, returns a best-fit
(least-squares) solution.

● If infinitely many solutions exist, returns
the least-norm (lowest speed) solution.

● If an inverse exists, the pseudoinverse is
the inverse.

Computing the Pseudoinverse

● 𝐽+can be computed using open-source

linear-algebra packages (Eigen, Armadillo+
LAPACK).

● Cubic complexity! (𝑂 𝑛3 for n variables)

● Decimate into smaller Jacobians, rather
than solve one huge Jacobian.

Orientation Alignment

● End-effector’s world frame 𝐪 𝑛 is
constrained to align with a target frame 𝐪 𝑡.

● For moving targets, end-effector’s angular
velocity equals the target frame’s: 𝛚𝑛 = 𝛚𝑡.

● Correct the alignment error by adding a
correcting angular velocity to the target’s.

Orientation Alignment (cont’d)

● For aligning an end-effector’s orientation
to a moving target, solve:

𝜃 𝑙+1
⋮
𝜃 𝑛

= 𝐽+ 𝛚𝑡 − 𝐚1𝜃 1 +⋯+ 𝐚𝑙𝜃 𝑙 −𝛚𝑒

Corrects
error

Orientation Alignment (cont’d)

● As target velocity 𝛚𝑒, we choose the
vector part of 𝛽2

ℎ
𝐪𝑛𝐪𝑡

∗.

● Here, quaternions 𝐪𝑛 and 𝐪𝑡 are the

orientations of resp. end-effector and
target, and ℎ is the time interval.

● Factor 𝛽(< 1) relaxes correction speed.

There’s a Twist…

● Quaternions 𝐪 and −𝐪 represent the same

orientation.

● For computing 𝛚𝑒, make sure that 𝐪𝑛 and
𝐪𝑡 point in the same direction (𝐪𝑛 ∙ 𝐪𝑡 > 0).

● If not, then negate either 𝐪𝑛 or 𝐪𝑡 to take
the shortest way home.

Linear Velocity

● Linear velocity, unlike angular velocity, is
bound to a point in space:

Linear Velocity (cont’d)

● Given angular velocity 𝛚, and linear
velocity 𝐯 at point 𝐩, the linear velocity at
an arbitrary point 𝐱 is 𝐯 + 𝛚 × (𝐱 − 𝐩).

𝐩
𝐱

Plücker Coordinates

● Angular and linear velocity of a link are
combined into a single entity represented
by a dual vector (aka Plücker coordinates):

𝐯 = 𝛚 + 𝐯𝑜𝜀

● Here, 𝐯𝑜 is the linear velocity at the origin
of the coordinate frame.

Transforming Plücker Coordinates

● Plücker coordinates are transformed from
one coordinate frame to another using the
dual quaternion “sandwich” product:

𝐪 𝐯 𝐪 ∗

● Returns the image of velocity 𝐯 after rigid
transformation by unit dual quaternion 𝐪 .

Deja Vu?

● The (combined) velocity of a link is the
sum of all joint velocities along the chain.

● The joint axes 𝐚 𝑖 form a vector space for
the velocity 𝐯 of an end-effector:

𝐯 = 𝐚 1𝜃 1 +⋯+ 𝐚 𝑛𝜃 𝑛

● Here, 𝜃 𝑖 are the revolute and prismatic

joint speeds.

Deja Vu? (cont’d)

● For 𝐪 𝑖 = 𝐪𝑖 + 𝐪𝑖′𝜀, link i’s pose expressed in

the world frame, the joint axis is the local
z-axis in world coordinates:

● For a revolute: For a prismatic:

𝐚 𝑖 = 𝐪 𝑖

0
0
1

𝐪 𝑖
∗
 𝐚 𝑖 = 𝐪 𝑖

0
0
ε

𝐪 𝑖
∗

Deja Vu? (cont’d)

● End-effector’s world frame 𝐪 𝑛 is
constrained to lock onto a target frame 𝐪 𝑡.

● For moving targets, end-effector’s
velocity equals the target frame’s: 𝐯 𝑛 = 𝐯 𝑡.

● To correct the error, we add the dual
vector part of 𝛽2

ℎ
𝐪 𝑛𝐪 𝑡

∗
 to the target velocity.

Emotion FX Demo

References

● K. Shoemake. Plücker Coordinate Tutorial. Ray Tracing
News, Vol. 11, No. 1

● R. Featherstone. Spatial Vectors and Rigid Body Dynamics.
http://royfeatherstone.org/spatial.

● L. Kavan et al. Skinning with dual quaternions. Proc. ACM
SIGGRAPH Symposium on Interactive 3D Graphics and
Games, 2007.

● G. van den Bergen. Math for Game Programmers:
Dual Numbers. GDC 2013 Tutorial.

http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://royfeatherstone.org/spatial
http://royfeatherstone.org/spatial
http://royfeatherstone.org/spatial
http://royfeatherstone.org/spatial
http://www.dtecta.com/files/GDC13_vandenBergen_Gino_Math_Tut.pdf

Open-Source Code

● Eigen: A C++ Linear Algebra Library.
http://eigen.tuxfamily.org. License: MPL2

● Armadillo: C++ Linear Algebra Library.
http://arma.sourceforge.net. License: MPL2

● LAPACK – Linear Algebra PACKage.
http://www.netlib.org/lapack. License: BSD

● MoTo C++ template library (dual quaternion code)
https://code.google.com/p/motion-toolkit/. License: MIT

http://eigen.tuxfamily.org/
http://arma.sourceforge.net/
http://arma.sourceforge.net/
http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.netlib.org/lapack
https://code.google.com/p/motion-toolkit/
https://code.google.com/p/motion-toolkit/
https://code.google.com/p/motion-toolkit/
https://code.google.com/p/motion-toolkit/
https://code.google.com/p/motion-toolkit/

Thank You!

My pursuits can be traced on:

● Web: http://www.dtecta.com

● Twitter: @dtecta

● Or just mail me: gino@dtecta.com

http://www.dtecta.com/
https://twitter.com/dtecta
https://twitter.com/dtecta
https://twitter.com/dtecta
mailto:gino@dtecta.com

