

Math for Game Programmers: Dual Numbers

Gino van den Bergen gino@dtecta.com

Introduction

- Dual numbers extend real numbers, similar to complex numbers.
- Complex numbers adjoin an element i, for which $i^2 = -1$.
- Dual numbers adjoin an element ε , for which $\varepsilon^2 = 0$.

Complex Numbers

• Complex numbers have the form

$$z = a + bi$$

where a and b are real numbers.

- a = real(z) is the real part, and
- b = imag(z) is the imaginary part.

Complex Numbers (cont'd)

- Complex operations pretty much follow rules for real operators:
- Addition:

$$(a + b i) + (c + d i) = (a + c) + (b + d) i$$

Subtraction:

$$(a + b i) - (c + d i) = (a - c) + (b - d) i$$

Complex Numbers (cont'd)

Multiplication:

$$(a + b i) (c + d i) = (ac - bd) + (ad + bc) i$$

 Products of imaginary parts feed back into real parts.

Dual Numbers

Dual numbers have the form

$$z = a + b \varepsilon$$

similar to complex numbers.

- a = real(z) is the real part, and
- b = dual(z) is the dual part.

Dual Numbers (cont'd)

• Operations are similar to complex numbers, however since $\varepsilon^2 = 0$, we have:

$$(a + b \varepsilon) (c + d \varepsilon) = (ac + 0) + (ad + bc)\varepsilon$$

 Dual parts do not feed back into real parts!

Dual Numbers (cont'd)

 The real part of a dual calculation is independent of the dual parts of the inputs.

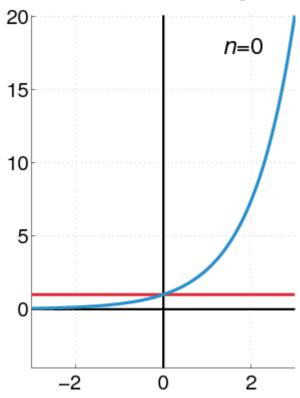
 The dual part of a multiplication is a "cross" product of real and dual parts.

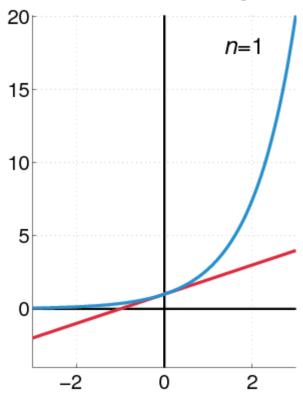
Taylor Series

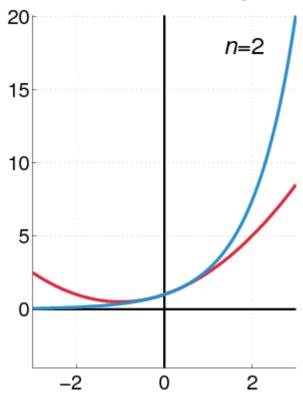
 Any value f(a + h) of a smooth function f can be expressed as an infinite sum:

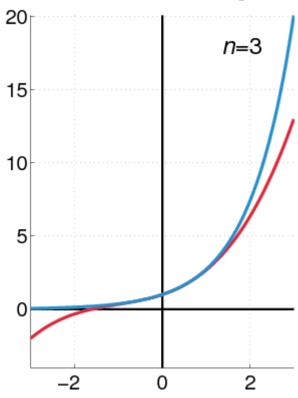
$$f(a+h)=f(a)+\frac{f'(a)}{1!}h+\frac{f''(a)}{2!}h^2+\cdots$$

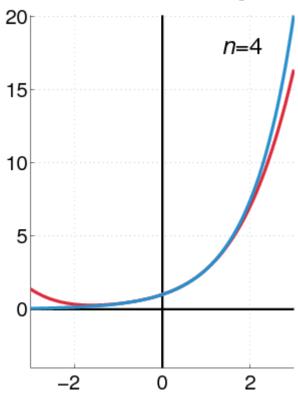
where f', f'', ..., $f^{(n)}$ are the first, second, ..., *n*-th derivative of *f*.











Taylor Series and Dual Numbers

• For $f(a + b \varepsilon)$, the Taylor series is:

$$f(a+b\varepsilon) = f(a) + \frac{f'(a)}{1!}b\varepsilon + \dots 0$$

- All second- and higher-order terms vanish!
- We have a closed-form expression that holds the function and its derivative.

Real Functions on Dual Numbers

 Any differentiable real function f can be extended to dual numbers, as:

$$f(a + b \varepsilon) = f(a) + b f'(a) \varepsilon$$

• For example, $sin(a + b \varepsilon) = sin(a) + b cos(a) \varepsilon$

Automatic Differentiation

- Add a unit dual part to the input value of a real function.
- Evaluate function using dual arithmetic.
- The output has the function value as real part and the derivate's value as dual part:

$$f(a + \varepsilon) = f(a) + f'(a) \varepsilon$$

How does it work?

- Check out the product rule of differentiation: $(f \cdot g)' = f \cdot g' + f' \cdot g$
- Notice the "cross" product of functions and their derivatives.
- Recall that $(a + a'\varepsilon)(b + b'\varepsilon) = ab + (ab' + a'b)\varepsilon$

Automatic Differentiation in C++

- We need some easy way of extending functions on floating-point types to dual numbers...
- ...and we need a type that holds dual numbers and offers operators for performing dual arithmetic.

Extension by Abstraction

- C++ allows you to abstract from the numerical type through:
 - Typedefs
 - Function templates
 - Constructors and conversion operators
 - Overloading
 - Traits class templates

Abstract Scalar Type

- Never use built-in floating-point types,
 such as float or double, explicitly.
- Instead use a type name, e.g. Scalar, either as template parameter or as typedef,

typedef float Scalar;

Constructors

- Built-in types have constructors as well:
 - Default: float() == 0.0f
 - Conversion: float(2) == 2.0f
- Use constructors for defining constants, e.g. use Scalar(2), rather than 2.0f or (Scalar) 2.

Overloading

- Operators and functions on built-in types can be overloaded in numerical classes, such as std::complex.
- Built-in types support operators: +, -, *, /
- ...and functions: sqrt, pow, sin, ...
- NB: Use <cmath> rather than <math.h>.
 That is, use sqrt NOT sqrtf on floats.

Traits Class Templates

- Type-dependent constants, such as the machine epsilon, are obtained through a traits class defined in in
- Use std::numeric_limits<Scalar>::epsilon() rather than FLT EPSILON in C++.
- Either specialize std::numeric_limits for your numerical classes or write your own traits class.

Example Code (before)

```
float smoothstep(float x)
    if (x < 0.0f)
        x = 0.0f;
    else if (x > 1.0f)
        x = 1.0f;
    return (3.0f - 2.0f * x) * x * x;
```

Example Code (after)

```
template <typename T>
T smoothstep(T x)
    if (x < T())
        X = T();
    else if (x > T(1))
        x = T(1);
    return (T(3) - T(2) * x) * x * x;
```

Dual Numbers in C++

- C++ has a standard class template std::complex<T> for complex numbers.
- We create a similar class template Dual<T> for dual numbers.
- Dual<T> defines constructors, accessors, operators, and standard math functions.

Dual<T>

```
template <typename T>
class Dual
...
private:
      T mReal;
      T mDual;
```

Dual<T>: Constructor

```
template <typename T>
Dual < T > :: Dual (T real = T(), T dual = T())
    : mReal(real)
    , mDual(dual)
Dual < Scalar > z1; // zero initialized
Dual<Scalar> z2(2); // zero dual part
Dual<Scalar> z3(2, 1);
```

Dual<T>: operators

```
template <typename T>
Dual<T> operator*(Dual<T> a, Dual<T> b)
  return Dual<T>(
             a.real() * b.real(),
             a.real() * b.dual() +
                 a.dual() * b.real()
```

Dual<T>: Standard Math

```
template <typename T>
Dual<T> sqrt(Dual<T> z)
    T tmp = sqrt(z.real());
    return Dual<T>(
               tmp,
               z.dual() * T(0.5) / tmp
```

Curve Tangent

For a 3D curve

$$\mathbf{p}(t) = (x(t), y(t), z(t)), \text{ where } t \in [a, b]$$

The tangent is

$$\frac{\mathbf{p}'(t)}{\|\mathbf{p}'(t)\|}, \text{ where } \mathbf{p}'(t) = (x'(t), y'(t), z'(t))$$

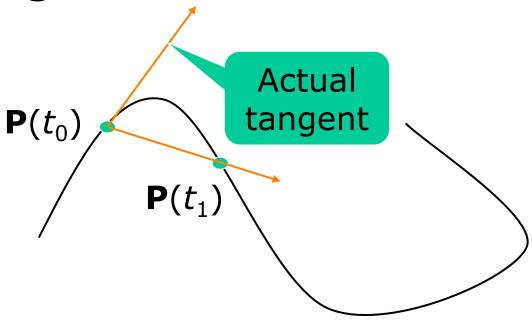
Curve Tangent

 Curve tangents are often computed by approximation:

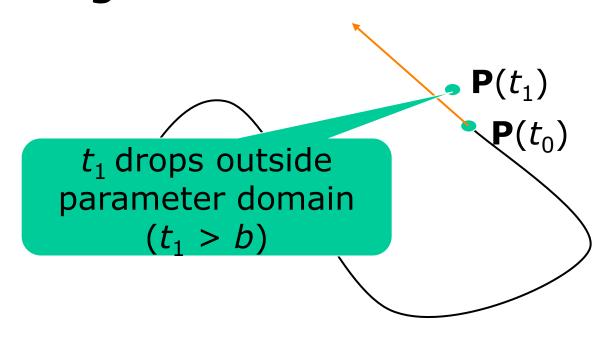
$$\frac{\mathbf{p}(t_1) - \mathbf{p}(t_0)}{\|\mathbf{p}(t_1) - \mathbf{p}(t_0)\|}$$
, where $t_1 = t_0 + h$

for tiny values of h.

Curve Tangent: Bad #1



Curve Tangent: Bad #2



Curve Tangent: Duals

 Make a curve function template using a class template for 3D vectors:

```
template <typename T>
Vector3<T> curveFunc(T x);
```

Curve Tangent: Duals (cont'd)

 Call the curve function using a dual number x = Dual < Scalar > (t, 1),(add ε to parameter t):

```
Vector3<Dual<Scalar> > y =
    curveFunc(Dual<Scalar>(t, 1));
```

Curve Tangent: Duals (cont'd)

The real part is the evaluated position:

```
Vector3<Scalar> position = real(y);
```

 The normalized dual part is the tangent at this position:

```
Vector3<Scalar> tangent =
   normalize(dual(y));
```

Line Geometry

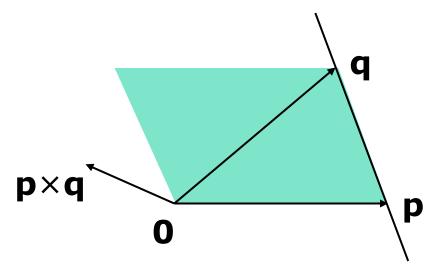
 The line through points p and q can be expressed explicitly as:

$$\mathbf{x}(t) = \mathbf{p} + (\mathbf{q} - \mathbf{p})t$$
, and

Implicitly, as a set of points x for which:

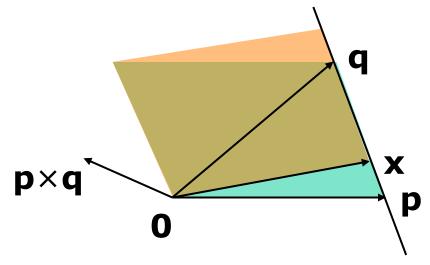
$$(q - p) \times x + p \times q = 0$$

Line Geometry



 $\mathbf{p} \times \mathbf{q}$ is orthogonal to the plane \mathbf{opq} , and its length is equal to the area of the parallellogram spanned by \mathbf{p} and \mathbf{q}

Line Geometry



All points \mathbf{x} on the line \mathbf{pq} span with $\mathbf{q} - \mathbf{p}$ a parallellogram that has the same area and orientation as the one spanned by **p** and **q**.

Plücker Coordinates

• Plücker coordinates are 6-tuples of the form $(u_x, u_y, u_z, v_x, v_y, v_z)$, where

$${\bf u} = (u_x, u_y, u_z) = {\bf q} - {\bf p}, and$$

$$\mathbf{v} = (v_{x'} \ v_{y'} \ v_z) = \mathbf{p} \times \mathbf{q}$$

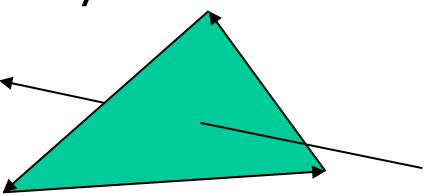
Plücker Coordinates (cont'd)

• For $(\mathbf{u}_1:\mathbf{v}_1)$ and $(\mathbf{u}_2:\mathbf{v}_2)$ directed lines, if

$$\mathbf{u}_1 \bullet \mathbf{v}_2 + \mathbf{v}_1 \bullet \mathbf{u}_2$$
 is

zero: the lines intersect positive: the lines cross right-handed negative: the lines cross left-handed

Triangle vs. Ray



If the signs of permuted dot products of the ray and edges are all equal, then the ray intersects the triangle.

Plücker Coordinates and Duals

 Dual 3D vectors conveniently represent Plücker coordinates:

```
Vector3<Dual<Scalar> >
```

 For a line (u:v), u is the real part and v is the dual part.

Dot Product of Dual Vectors

• The dot product of dual vectors $\mathbf{u}_1 + \mathbf{v}_1 \varepsilon$ and $\mathbf{u}_2 + \mathbf{v}_2 \varepsilon$ is a dual number z, for which

real
$$(z) = \mathbf{u}_1 \cdot \mathbf{u}_2$$
, and dual $(z) = \mathbf{u}_1 \cdot \mathbf{v}_2 + \mathbf{v}_1 \cdot \mathbf{u}_2$

• The dual part is the permuted dot product

Angle of Dual Vectors

For a and b dual vectors, we have

$$\theta + d\varepsilon = \arccos\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}\right)$$

where θ is the angle and d is the signed distance between the lines **a** and **b**.

Translation

- Translation of lines only affects the dual part. Translation of line pq over c gives:
- Real: (q + c) (p + c) = q p
- Dual: $(\mathbf{p} + \mathbf{c}) \times (\mathbf{q} + \mathbf{c})$ = $\mathbf{p} \times \mathbf{q} + \mathbf{c} \times (\mathbf{q} - \mathbf{p})$
- q p pops up in the dual part!

Rotation

- Real and dual parts are rotated in the same way. For a rotation matrix R:
- Real: $\mathbf{Rq} \mathbf{Rp} = \mathbf{R}(\mathbf{q} \mathbf{p})$
- Dual: $\mathbf{Rp} \times \mathbf{Rq} = \mathbf{R}(\mathbf{p} \times \mathbf{q})$
- The latter holds for rotations only! That is,
 R performs no scaling or reflection.

Rigid-Body Transform

For rotation matrix R and translation vector c,
 the dual 3×3 matrix M with

real(M) = R, and
$$dual(\mathbf{M}) = [\mathbf{c}]_{\times} \mathbf{R} = \begin{bmatrix} 0 & -c_z & c_y \\ c_z & 0 & -c_x \\ -c_y & c_x & 0 \end{bmatrix} \mathbf{R}$$

maps Plücker coordinates to the new reference frame.

Screw Theory

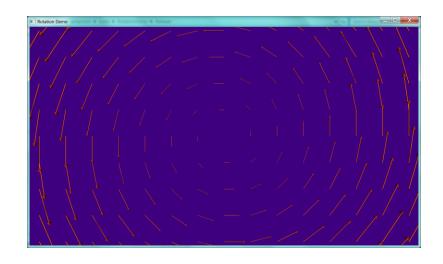
 A screw motion is a rotation about a line and a translation along the same line.

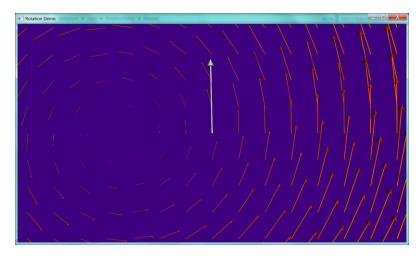
 "Any rigid body displacement can be defined by a screw motion." (Chasles)

Chasles' Theorem (Sketchy Proof)

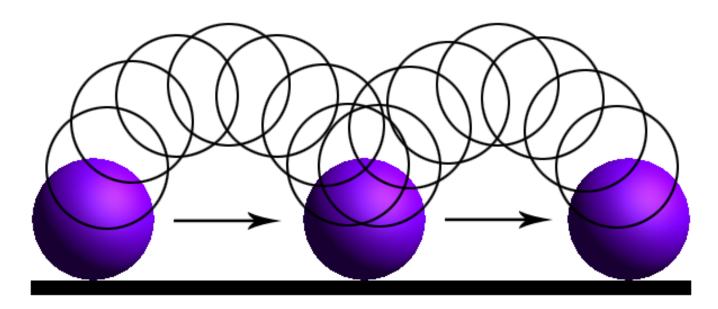
- Decompose translation into a term along the line and a term orthogonal to the line.
- Translation orthogonal to the axis of rotation offsets the axis.
- Translation along the axis does not care about the position of the axis.

Translations Orthogonal to Axis





Example: Rolling Ball



Dual Quaternions

- Unit dual quaternions represent screw motions.
- The rigid body transform over a unit quaternion q and vector t is:

$$q + \frac{1}{2} tq \varepsilon$$

Here, **t** is a quaternion with zero scalar part.

Where is the Screw?

A unit dual quaternion can be written as

$$\cos\left(\frac{\theta + d\varepsilon}{2}\right) + \sin\left(\frac{\theta + d\varepsilon}{2}\right)(\mathbf{u} + \mathbf{v}\varepsilon)$$

where θ is the rotation angle, d, the translation distance, and $\mathbf{u} + \mathbf{v}\varepsilon$, the line given in Plücker coordinates.

Rigid-Body Transform Revisited

- Similar to 3D vectors, Plücker coordinates can be transformed using dual quaternions.
- The mapping of a dual vector v according to a screw motion q is

$$\mathbf{v}' = \mathbf{q} \ \mathbf{v} \ \mathbf{q}^*$$

Traditional Skinning

- Bones are defined by transformation matrices \mathbf{T}_i relative to the rest pose.
- Each vertex is transformed as

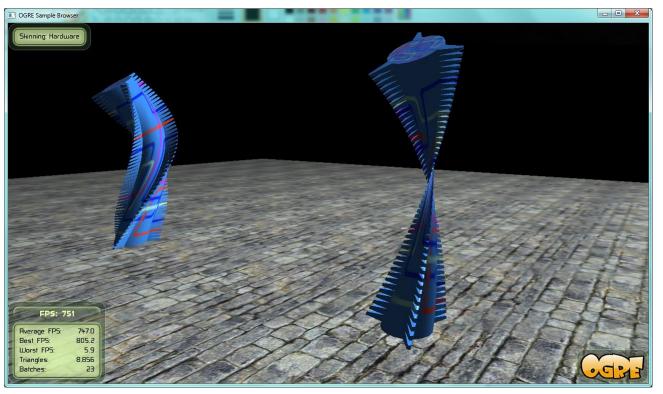
$$\mathbf{p}' = \lambda_1 \mathbf{T}_1 \mathbf{p} + \dots + \lambda_n \mathbf{T}_n \mathbf{p} = (\lambda_1 \mathbf{T}_1 + \dots + \lambda_n \mathbf{T}_n) \mathbf{p}$$

Here, λ_i are blend weights.

Traditional Skinning (cont'd)

- A weighted sum of matrices is not necessarily a rigid-body transformation.
- Most notable artifact is "candy wrapper":
 The skin collapses while transiting from one bone to the other.

Candy Wrapper



Dual Quaternion Skinning

- Use a blend operation that always returns a rigid-body transformation.
- Several options exists. The simplest one is a normalized lerp of dual quaternions:

$$\mathbf{q} = \frac{\lambda_1 \mathbf{q}_1 + \dots + \lambda_n \mathbf{q}_n}{\|\lambda_1 \mathbf{q}_1 + \dots + \lambda_n \mathbf{q}_n\|}$$

Dual Quaternion Skinning (cont'd)

- Can the weighted sum of dual quaternions ever get zero?
- Not if all dual quaternions lie in the same hemisphere.
- Observe that \mathbf{q} and $-\mathbf{q}$ are the same pose. If necessary, negate each \mathbf{q}_i to dot positively with \mathbf{q}_0 .

Further Uses

- Motor Algebra: Linear and angular velocity of a rigid body combined in a dual 3D vector.
- **Spatial Vector Algebra**: Featherstone uses 6D vectors for representing velocities and forces in robot dynamics.

Conclusions

- Abstract from numerical types in your C++ code.
- Differentiation is easy, fast, and exact with dual numbers.
- Dual numbers have other uses as well.
 Explore yourself!

References

- D. Vandevoorde and N. M. Josuttis. *C++ Templates: The Complete Guide*. Addison-Wesley, 2003.
- K. Shoemake. *Plücker Coordinate Tutorial*. <u>Ray Tracing</u> <u>News, Vol. 11, No. 1</u>
- R. Featherstone. Robot Dynamics Algorithms. Kluwer Academic Publishers, 1987.
- L. Kavan et al. Skinning with dual quaternions. *Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games*, 2007

Thank You!

For sample code, check out free* MoTo
 C++ template library on:

```
https://code.google.com/p/motion-toolkit/
```

(*) gratis (as in "free beer") and libre (as in "free speech")