Math for Game Programmers: Dual Numbers

Gino van den Bergen gino@dtecta.com

Introduction

- Dual numbers extend real numbers, similar to complex numbers.
- Complex numbers adjoin an element i, for which $i^{2}=-1$.
- Dual numbers adjoin an element ε, for which $\varepsilon^{2}=0$.

Complex Numbers

- Complex numbers have the form

$$
z=a+b i
$$

where a and b are real numbers.

- $a=$ real (z) is the real part, and
- $b=\operatorname{imag}(z)$ is the imaginary part.

Complex Numbers (cont'd)

- Complex operations pretty much follow rules for real operators:
- Addition:
$(a+b i)+(c+d i)=(a+c)+(b+d) i$
- Subtraction:
$(a+b i)-(c+d i)=(a-c)+(b-d) i$

Complex Numbers (cont'd)

- Multiplication:
$(a+b i)(c+d i)=(a c-b d)+(a d+b c) i$
- Products of imaginary parts feed back into real parts.

Dual Numbers

- Dual numbers have the form

$$
z=a+b \varepsilon
$$

similar to complex numbers.

- $a=$ real (z) is the real part, and
- $b=$ dual (z) is the dual part.

Dual Numbers (cont'd)

- Operations are similar to complex numbers, however since $\varepsilon^{2}=0$, we have:
$(a+b \varepsilon)(c+d \varepsilon)=(a c+0)+(a d+b c) \varepsilon$
- Dual parts do not feed back into real parts!

Dual Numbers (cont'd)

- The real part of a dual calculation is independent of the dual parts of the inputs.
- The dual part of a multiplication is a "cross" product of real and dual parts.

Taylor Series

- Any value $f(a+h)$ of a smooth function f can be expressed as an infinite sum:

$$
f(a+h)=f(a)+\frac{f^{\prime}(a)}{1!} h+\frac{f^{\prime \prime}(a)}{2!} h^{2}+\cdots
$$

where $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are the first, second, ..., n-th derivative of f.

Taylor Series Example

Taylor Series and Dual Numbers

- For $f(a+b \varepsilon)$, the Taylor series is:

$$
f(a+b \varepsilon)=f(a)+\frac{f^{\prime}(a)}{1!} b \varepsilon+\ldots 0
$$

- All second- and higher-order terms vanish!
- We have a closed-form expression that holds the function and its derivative.

Real Functions on Dual Numbers

- Any differentiable real function f can be extended to dual numbers, as:

$$
f(a+b \varepsilon)=f(a)+b f^{\prime}(a) \varepsilon
$$

- For example,

$$
\sin (a+b \varepsilon)=\sin (a)+b \cos (a) \varepsilon
$$

Automatic Differentiation

- Add a unit dual part to the input value of a real function.
- Evaluate function using dual arithmetic.
- The output has the function value as real part and the derivate's value as dual part:

$$
f(a+\varepsilon)=f(a)+f^{\prime}(a) \varepsilon
$$

How does it work?

- Check out the product rule of differentiation: $(f \cdot g)^{\prime}=f \cdot g^{\prime}+f^{\prime} \cdot g$
- Notice the "cross" product of functions and their derivatives.
- Recall that
$\left(a+a^{\prime} \varepsilon\right)\left(b+b^{\prime} \varepsilon\right)=a b+\left(a b^{\prime}+a^{\prime} b\right) \varepsilon$

Automatic Differentiation in C++

- We need some easy way of extending functions on floating-point types to dual numbers...
- ...and we need a type that holds dual numbers and offers operators for performing dual arithmetic.

Extension by Abstraction

- C++ allows you to abstract from the numerical type through:
- Typedefs
- Function templates
- Constructors and conversion operators
- Overloading
- Traits class templates

Abstract Scalar Type

- Never use built-in floating-point types, such as float or double, explicitly.
- Instead use a type name, e.g. Scalar, either as template parameter or as typedef, typedef float Scalar;

Constructors

- Built-in types have constructors as well:
- Default: float() == 0.0f
- Conversion: float (2) == $2.0 f$
- Use constructors for defining constants, e.g. use Scalar(2), rather than $2.0 f$ or (Scalar) 2 .

Overloading

- Operators and functions on built-in types can be overloaded in numerical classes, such as std::complex.
- Built-in types support operators: +,-,*,/
- ...and functions: sqrt, pow, sin, ...
- NB: Use <cmath> rather than <math.h>.

That is, use sqre NOT sqrtf on floats.

Traits Class Templates

- Type-dependent constants, such as the machine epsilon, are obtained through a traits class defined in <limits>.
- Use std::numeric_limits<Scalar>::epsilon() rather than fLT_EPSILON in C++.
- Either specialize std: :numeric_limits for your numerical classes or write your own traits class.

Example Code (before)

float smoothstep(float x)
\{

$$
\begin{aligned}
& \text { if }(x<0.0 f) \\
& x=0.0 f ; \\
& \text { else if }(x>1.0 f) \\
& x=1.0 f ; \\
& \text { return }(3.0 f-2.0 f * x) * x * x ;
\end{aligned}
$$

Example Code (after)

template <typename T >
T smoothstep (T x)
\{

$$
\begin{aligned}
& \text { if (x }<\mathrm{T}()) \\
& \mathrm{x}=\mathrm{T}(\mathrm{)} \text {; } \\
& \text { else if (x > } T(1) \text {) } \\
& \mathrm{x}=\mathrm{T}(1) \text {; } \\
& \text { return (T(3) }-T(2) * x) * x * x ;
\end{aligned}
$$

Dual Numbers in C++

- C++ has a standard class template std: :complex<T> for complex numbers.
- We create a similar class template Dual $<T>$ for dual numbers.
- Dual<T> defines constructors, accessors, operators, and standard math functions.

Dual<T>

template <typename T>

class Dual
\{
private:
T mReal;
T mDual;
\};

Dual<T>: Constructor

template <typename T>
Dual<T>: : Dual (T real $=T(), T$ dual $=T())$
: mReal (real)
, mDual(dual)
\{ \}

Dual<Scalar> z1; // zero initialized
Dual<Scalar> z2(2); // zero dual part
Dual<Scalar> z3(2, 1);

Dual<T>: operators

template <typename T>
Dual<T> operator*(Dual<T> a, Dual<T> b)
\{

$$
\begin{aligned}
& \text { return Dual<T>(} \\
& \text { a.real() * b.real(), } \\
& \text { a.real() * b.dual() + } \\
& \text { a.dual() * b.real() }
\end{aligned}
$$

);
\}

Dual<T>: Standard Math

template <typename T>
Dual<T> sqrt(Dual<T> z)
\{

$$
\begin{aligned}
& \mathrm{T} \text { tmp }=\text { sqrt(z.real()); } \\
& \text { return Dual<T>(} \\
& \quad \text { tmp, } \\
& \quad z . d u a l() * T(0.5) / \text { tmp }
\end{aligned}
$$

);
\}

Curve Tangent

- For a 3D curve

$$
\mathbf{p}(t)=(x(t), y(t), z(t)), \quad \text { where } t \in[a, b]
$$

The tangent is

$$
\frac{\mathbf{p}^{\prime}(t)}{\left\|\mathbf{p}^{\prime}(t)\right\|}, \quad \text { where } \quad \mathbf{p}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)
$$

Curve Tangent

- Curve tangents are often computed by approximation:

$$
\frac{\mathbf{p}\left(t_{1}\right)-\mathbf{p}\left(t_{0}\right)}{\left\|\mathbf{p}\left(t_{1}\right)-\mathbf{p}\left(t_{0}\right)\right\|}, \quad \text { where } \quad t_{1}=t_{0}+h
$$

for tiny values of h.

Curve Tangent: Bad \#1

Curve Tangent: Bad \#2

Curve Tangent: Duals

- Make a curve function template using a class template for 3D vectors:
template <typename T> Vector $3<T>$ curveFunc (T x) ;

Curve Tangent: Duals (cont'd)

- Call the curve function using a dual number $\mathrm{x}=$ Dual<Scalar>(t, 1), (add ε to parameter t):

> Vector3<Dual<Scalar\gg y = \quad curveFunc (Dual<Scalar>(t, 1));

Curve Tangent: Duals (cont'd)

- The real part is the evaluated position: Vector3<Scalar> position = real(y);
- The normalized dual part is the tangent at this position:
Vector3<Scalar> tangent = normalize(dual(y));

Line Geometry

- The line through points \mathbf{p} and \mathbf{q} can be expressed explicitly as:

$$
\mathbf{x}(t)=\mathbf{p}+(\mathbf{q}-\mathbf{p}) t, \text { and }
$$

- Implicitly, as a set of points \mathbf{x} for which:

$$
(\mathbf{q}-\mathbf{p}) \times \mathbf{x}+\mathbf{p} \times \mathbf{q}=\mathbf{0}
$$

Line Geometry

$\mathbf{p} \times \mathbf{q}$ is orthogonal to the plane $\mathbf{0 p q}$, and its length is equal to the area of the parallellogram spanned by \mathbf{p} and \mathbf{q}

Line Geometry

All points \mathbf{x} on the line pq span with $\mathbf{q}-\mathbf{p}$ a parallellogram that has the same area and orientation as the one spanned by \mathbf{p} and \mathbf{q}.

Plücker Coordinates

- Plücker coordinates are 6-tuples of the form ($u_{x}, u_{y}, u_{z}, v_{x}, v_{y}, v_{z}$), where

$$
\begin{aligned}
& \mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right)=\mathbf{q}-\mathbf{p}, \text { and } \\
& \mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)=\mathbf{p} \times \mathbf{q}
\end{aligned}
$$

Plücker Coordinates (cont'd)

- For ($\mathbf{u}_{1}: \mathbf{v}_{1}$) and ($\mathbf{u}_{2}: \mathbf{v}_{2}$) directed lines, if

$$
\mathbf{u}_{1} \cdot \mathbf{v}_{2}+\mathbf{v}_{1} \cdot \mathbf{u}_{2} \text { is }
$$

zero: the lines intersect positive: the lines cross right-handed negative: the lines cross left-handed

Triangle vs. Ray

If the signs of permuted dot products of the ray and edges are all equal, then the ray intersects the triangle.

Plücker Coordinates and Duals

- Dual 3D vectors conveniently represent Plücker coordinates:
Vector3<Dual<Scalar>>
- For a line ($\mathbf{u}: \mathbf{v}$), \mathbf{u} is the real part and \mathbf{v} is the dual part.

Dot Product of Dual Vectors

- The dot product of dual vectors $\mathbf{u}_{1}+\mathbf{v}_{1} \varepsilon$ and $\mathbf{u}_{2}+\mathbf{v}_{2} \varepsilon$ is a dual number z, for which

$$
\begin{aligned}
& \operatorname{real}(z)=\mathbf{u}_{1} \bullet \mathbf{u}_{2} \text {, and } \\
& \operatorname{dual}(z)=\mathbf{u}_{1} \cdot \mathbf{v}_{2}+\mathbf{v}_{1} \bullet \mathbf{u}_{2}
\end{aligned}
$$

- The dual part is the permuted dot product

Angle of Dual Vectors

- For \mathbf{a} and \mathbf{b} dual vectors, we have

$$
\theta+d \varepsilon=\arccos \left(\frac{\mathbf{a} \bullet \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}\right)
$$

where θ is the angle and d is the signed distance between the lines \mathbf{a} and \mathbf{b}.

Translation

- Translation of lines only affects the dual part. Translation of line pq over c gives:
- Real: $(\mathbf{q}+\mathbf{c})-(\mathbf{p}+\mathbf{c})=\mathbf{q}-\mathbf{p}$
- Dual: $(\mathbf{p}+\mathbf{c}) \times(\mathbf{q}+\mathbf{c})$

$$
=\mathbf{p} \times \mathbf{q}+\mathbf{c} \times(\mathbf{q}-\mathbf{p})
$$

- $\mathbf{q}-\mathbf{p}$ pops up in the dual part!

Rotation

- Real and dual parts are rotated in the same way. For a rotation matrix \mathbf{R} :
- Real: Rq - Rp = R(q - $\mathbf{p})$
- Dual: $\mathbf{R p} \times \mathbf{R q}=\mathbf{R}(\mathbf{p} \times \mathbf{q})$
- The latter holds for rotations only! That is, \mathbf{R} performs no scaling or reflection.

Rigid-Body Transform

- For rotation matrix \mathbf{R} and translation vector \mathbf{c}, the dual 3×3 matrix \mathbf{M} with

$$
\operatorname{real}(\mathbf{M})=\mathbf{R}, \text { and }
$$

$$
\operatorname{dual}(\mathbf{M})=[\mathbf{c}]_{x} \mathbf{R}=\left[\begin{array}{ccc}
0 & -c_{z} & c_{y} \\
c_{z} & 0 & -c_{x} \\
-c_{y} & c_{x} & 0
\end{array}\right] \mathbf{R}
$$

maps Plücker coordinates to the new reference frame.

Screw Theory

- A screw motion is a rotation about a line and a translation along the same line.
- "Any rigid body displacement can be defined by a screw motion." (Chasles)

Chasles' Theorem (Sketchy Proof)

- Decompose translation into a term along the line and a term orthogonal to the line.
- Translation orthogonal to the axis of rotation offsets the axis.
- Translation along the axis does not care about the position of the axis.

Translations Orthogonal to Axis

Example: Rolling Ball

Dual Quaternions

- Unit dual quaternions represent screw motions.
- The rigid body transform over a unit quaternion \mathbf{q} and vector \mathbf{t} is:

$$
\mathbf{q}+\frac{1}{2} \mathbf{t q} \varepsilon
$$

Here, \mathbf{t} is a quaternion with zero scalar part.

Where is the Screw?

- A unit dual quaternion can be written as

$$
\cos \left(\frac{\theta+d \varepsilon}{2}\right)+\sin \left(\frac{\theta+d \varepsilon}{2}\right)(\mathbf{u}+\mathbf{v} \varepsilon)
$$

where θ is the rotation angle, d, the translation distance, and $\mathbf{u}+\mathbf{v} \varepsilon$, the line given in Plücker coordinates.

Rigid-Body Transform Revisited

- Similar to 3D vectors, Plücker coordinates can be transformed using dual quaternions.
- The mapping of a dual vector \mathbf{v} according to a screw motion \mathbf{q} is

$$
\mathbf{v}^{\prime}=\mathbf{q} \mathbf{v} \mathbf{q}^{*}
$$

Traditional Skinning

- Bones are defined by transformation matrices \mathbf{T}_{i} relative to the rest pose.
- Each vertex is transformed as

$$
\mathbf{p}^{\prime}=\lambda_{1} \mathbf{T}_{1} \mathbf{p}+\cdots+\lambda_{n} \mathbf{T}_{n} \mathbf{p}=\left(\lambda_{1} \mathbf{T}_{1}+\cdots+\lambda_{n} \mathbf{T}_{n}\right) \mathbf{p}
$$

Here, λ_{i} are blend weights.

Traditional Skinning (cont'd)

- A weighted sum of matrices is not necessarily a rigid-body transformation.
- Most notable artifact is "candy wrapper": The skin collapses while transiting from one bone to the other.

Candy Wrapper

Dual Quaternion Skinning

- Use a blend operation that always returns a rigid-body transformation.
- Several options exists. The simplest one is a normalized lerp of dual quaternions:

$$
\mathbf{q}=\frac{\lambda_{1} \mathbf{q}_{1}+\cdots+\lambda_{n} \mathbf{q}_{n}}{\left\|\lambda_{1} \mathbf{q}_{1}+\cdots+\lambda_{n} \mathbf{q}_{n}\right\|}
$$

Dual Quaternion Skinning (cont'd)

- Can the weighted sum of dual quaternions ever get zero?
- Not if all dual quaternions lie in the same hemisphere.
- Observe that \mathbf{q} and $-\mathbf{q}$ are the same pose. If necessary, negate each \mathbf{q}_{i} to dot positively with \mathbf{q}_{0}.

Further Uses

- Motor Algebra: Linear and angular velocity of a rigid body combined in a dual 3D vector.
- Spatial Vector Algebra: Featherstone uses 6D vectors for representing velocities and forces in robot dynamics.

Conclusions

- Abstract from numerical types in your C++ code.
- Differentiation is easy, fast, and exact with dual numbers.
- Dual numbers have other uses as well. Explore yourself!

References

- D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide. Addison-Wesley, 2003.
- K. Shoemake. Plücker Coordinate Tutorial. Ray Tracing News, Vol. 11, No. 1
- R. Featherstone. Robot Dynamics Algorithms. Kluwer Academic Publishers, 1987.
- L. Kavan et al. Skinning with dual quaternions. Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2007

Thank You!

- For sample code, check out free* MoTo C++ template library on:
https://code.google.com/p/motion-toolkit/
${ }^{(*)}$ gratis (as in "free beer") and libre (as in "free speech")

